Research on Progress of Forest Fire Monitoring With Satellite Remote Sensing
PDF
EPUB
HTML

Keywords

satellite remote sensing; sensors; forest fire monitoring; forest fire brightness temperature; forest fire smoke

How to Cite

Zheng, Y., Zhang, G., Tan, S., & Feng, L. (2023). Research on Progress of Forest Fire Monitoring With Satellite Remote Sensing. Agricultural & Rural Studies, 1(2), 0008. https://doi.org/10.59978/ar01020008

Abstract

With satellite remote sensing technology blooming, satellite remote sensing has become a common tool to detect forest fires, and played an important role in forest fire monitoring. This paper sort the research status and progress on satellite remote sensing monitoring for forest fires to provide directions and insights for subsequent research and applications. Through reviewing the literature on satellite remote sensing monitoring for forest fires, we present satellites and sensors for forest fire monitoring, describe forest fire monitoring methods through brightness temperature detection and smoke detection, and summarize current problems of satellite remote sensing monitoring of forest fires. Despite forest fire satellite remote sensing monitoring algorithms are becoming increasingly mature, it is not without problems such as slow migration of cloud detection algorithms, difficulties in unifying spatial and temporal characteristics, and difficulties in detecting small fires and low-temperature fires. Finally, in response to the problems identified, we list some recommendations with a view to providing useful references for future research on forest fire monitoring with satellite remote sensing.

https://doi.org/10.59978/ar01020008
PDF
EPUB
HTML

References

Abid, F. (2021). A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technology, 57(2), 559–590. https://doi.org/10.1007/s10694-020-01056-z

Arino, O., Casadio, S., & Serpe, D. (2012). Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sensing of Environment, 116, 226–238. https://doi.org/10.1016/j.rse.2011.05.025

Arino, O., Rosaz, J., & Atlas, F. (1999). 1997 and 1998 world atsr fire atlas using ers-2 atsr-2 data. Proceedings of the joint fire science conference.

Arrue, B. C., Ollero, A., & Dios, J. R. M. d. (2000). An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intelligent Systems and their Applications, 15(3), 64–73. https://doi.org/10.1109/5254.846287

Ba, R., Chen, C., Yuan, J., Song, W., & Lo, S. (2019). SmokeNet: Satellite smoke scene detection using convolutional neural network with spatial and channel-wise attention. Remote Sensing, 11(14), 1702. https://doi.org/10.3390/rs11141702

Barmpoutis, P., Stathaki, T., Dimitropoulos, K., & Grammalidis, N. (2020). Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures. Remote Sensing, 12(19), 3177. https://doi.org/10.3390/rs12193177

Bing, F., Jin, Y., Zhang, W., Xu, N., Yu, T., Zhang, L., & Pei, Y. (2023). Research progress of remote sensing image cloud detection based on machine learning. Remote sensing technology and application, 38(1), 129–142. https://doi.org/10.11873/j.issn.1004-0323.2023.1.0129

Chen, J., Zheng, W., Wu, S., Liu, C., & Yan, H. (2022). Fire monitoring algorithm and its application on the GEO-KOMPSAT-2A geostationary meteorological satellite. Remote Sensing, 14(11), 2655. https://doi.org/10.3390/rs14112655

Chrysoulakis, N., Herlin, I., Prastacos, P., Yahia, H., Grazzini, J., & Cartalis, C. (2007). An improved algorithm for the detection of plumes caused by natural or technological hazards using AVHRR imagery. Remote Sensing of Environment, 108(4), 393–406. https://doi.org/10.1016/j.rse.2006.11.024

Chung, Y. S., & Le, H. V. (1984). Detection of forest-fire smoke plumes by satellite imagery. Atmospheric Environment, 18(10), 2143–2151. https://doi.org/10.1016/0004-6981(84)90201-4

Chuvieco, E., Aguado, I., Salas, J., García, M., Yebra, M., & Oliva, P. (2020). Satellite remote sensing contributions to wildland fire science and management. Current Forestry Reports, 6(2), 81–96. https://doi.org/10.1007/s40725-020-00116-5

Dozier, J. (1981). A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11, 221–229. https://doi.org/10.1016/0034-4257(81)90021-3

Eckmann, T. C., Roberts, D. A., & Still, C. J. (2008). Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS. Remote Sensing of Environment, 112(10), 3773–3783. https://doi.org/10.1016/j.rse.2008.05.008

Fang, Z. (2014). The evolution of meteorological satellites and the insight from it. Advances in Meteorological Science and Technology, 4(06), 27–34. https://doi.org/10.3969/j.issn.2095-1973.2014.06.003

Feng, L., & Zhou, W. (2023). The forest fire dynamic change influencing factors and the impacts on gross primary productivity in China. Remote Sensing, 15(5), 1364. https://doi.org/10.3390/rs15051364

Ferrare, R. A., Fraser, R. S., & Kaufman, Y. J. (1990). Satellite measurements of large-scale air pollution: Measurements of forest fire smoke. Journal of Geophysical Research: Atmospheres, 95(D7), 9911–9925. https://doi.org/10.1029/JD095iD07p09911

Flannigan, M. D., & Haar, T. H. V. (1986). Forest fire monitoring using NOAA satellite AVHRR. Canadian Journal of Forest Research, 16, 975–982. https://doi.org/10.1139/x86-171

Flasse, S. P., & Ceccato, P. (1996). A contextual algorithm for AVHRR fire detection. International Journal of Remote Sensing, 17(2), 419–424. https://doi.org/10.1080/01431169608949018

Gao, J., Wang, K., Tian, X., & Chen, J. (2018). A BP-NN based cloud detection method for FY-4 remote sensing images. Journal of Infrared and Millimeter Waves, 37(4), 477–485. https://doi.org/10.11972/j.issn.1001-9014.2018.04.016

Giglio, L. (2007). Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment, 108(4), 407–421. https://doi.org/10.1016/j.rse.2006.11.018

Giglio, L., Csiszar, I., Restás, Á., Morisette, J. T., Schroeder, W., Morton, D., & Justice, C. O. (2008). Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 112(6), 3055–3063. https://doi.org/10.1016/j.rse.2008.03.003

Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87(2), 273–282. https://doi.org/10.1016/S0034-4257(03)00184-6

Giglio, L., & Schroeder, W. (2014). A global feasibility assessment of the bi-spectral fire temperature and area retrieval using MODIS data. Remote Sensing of Environment, 152, 166–173. https://doi.org/10.1016/j.rse.2014.06.010

Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. https://doi.org/10.1016/j.rse.2016.02.054

He, L., & Li, Z. (2011). Enhancement of a fire-detection algorithm by eliminating solar contamination effects and atmospheric path radiance: Application to MODIS data. International Journal of Remote Sensing, 32(21), 6273–6293. https://doi.org/10.1080/01431161.2010.508057

He, L., & Li, Z. (2012). Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: Application to AVHRR data. International Journal of Remote Sensing, 33(22), 7047–7059. https://doi.org/10.1080/2150704X.2012.699202

He, Q., & Liu, C. (2008). Improved algorithm of self-adaptive five detection for MODIS data. Journal of Remote Sensing(3), 448–453. https://doi.org/10.11834/jrs.20080361

He, R., Zhao, F., Zeng, Y., Zhou, R., Shu, L., & Ye, J. (2022). Application of multisource remote sensing imagery to forest fire monitoring. World Forestry Research, 35(2), 59–63. https://doi.org/10.13348/j.cnki.sjlyyj.2021.0097.y

He, X., Feng, X., Han, Q., Kang, N., Guo, Q., & Peng, Y. (2020). Advances of the geostationary meteorological satellite in the world: A review. Advances in Meteorological Science and Technology, 10(1), 22–29+41. https://doi.org/10.3969/j.issn.2095-1973.2020.01.005

Howard, J., Murashov, V., & Branche, C. M. (2018). Unmanned aerial vehicles in construction and worker safety. American journal of industrial medicine, 61(1), 3–10. https://doi.org/10.1002/ajim.22782

Hua, L., & Shao, G. (2017). The progress of operational forest fire monitoring with infrared remote sensing. Journal of Forestry Research, 28(2), 215–229. https://doi.org/10.1007/s11676-016-0361-8

Jeppesen, J. H., Jacobsen, R. H., Inceoglu, F., & Toftegaard, T. S. (2019). A cloud detection algorithm for satellite imagery based on deep learning. Remote Sensing of Environment, 229, 247–259. https://doi.org/10.1016/j.rse.2019.03.039

Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D. P., Descloitres, J., Alleaume, S., Petitcolin, F., & Kaufman, Y. J. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1), 244–262. https://doi.org/10.1016/S0034-4257(02)00076-7

Kang, Y., Jang, E., Im, J., & Kwon, C. (2022). A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency. GIScience & Remote Sensing, 59(1), 2019–2035. https://doi.org/10.1080/15481603.2022.2143872

Kaufman, Y. J., Tucker, C. J., & Fung, I. (1990). Remote sensing of biomass burning in the tropics. Journal of Geophysical Research: Atmospheres, 95(D7), 9927–9939. https://doi.org/10.1029/JD095iD07p09927

Kennedy, P. J., Belward, A. S., & Gregoire, J. M. (1994). An improved approach to fire monitoring in West Africa using AVHRR data. International Journal of Remote Sensing, 15(11), 2235–2255. https://doi.org/10.1080/01431169408954240

Lee, T. F., & Tag, P. M. (1990). Improved detection of hotspots using the AVHRR 3.7-um channel. Bulletin of the American Meteorological Society, 71(12), 1722–1730. https://doi.org/10.1175/1520-0477(1990)071<1722:IDOHUT>2.0.CO;2

Li, X., & Jia, J. (2018). How the smallest clairvoyance in meteorological satellite was tempered ?—The preparation of the infrared-detector chips of FY-4A multiple channel scanning radiation imager. Chinese Journal of Nature, 40(2), 90–101. https://doi.org/10.3969/j.issn.0253-9608.2018.02.002

Li, X., Song, W., Lian, L., & Wei, X. (2015). Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sensing, 7(4), 4473–4498. https://doi.org/10.3390/rs70404473

Li, X., Wang, J., Song, W., Ma, J., Telesca, L., & Zhang, Y. (2014). Automatic smoke detection in MODIS satellite data based on K-means clustering and fisher linear discrimination. Photogrammetric Engineering & Remote Sensing, 80(10), 971–982. https://doi.org/10.14358/PERS.80.10.971

Li, X., Zhang, G., Tan, S., Yang, Z., & Wu, X. (2023). Forest fire smoke detection research based on the random forest algorithm and sub-pixel mapping method. Forests, 14(3), 485. https://doi.org/10.3390/f14030485

Li, Y., Zhang, X., Wu, H., Gao, P., & Xia, D. (2007). An enhanced contextual fire detection algorithm based on remote sensing images. Journal of Image and Graphics, 12(9), 1627–1632. https://doi.org/10.11834/jig.20070922

Li, Z., Kaufman, Y. J., Ichoku, C., Fraser, R., & Yu, X. (2001). A review of AVHRR-based active fire detection algorithms: Principles limitations and recommendations. In: Ahern FJ, Goldammer JG, Justice CO (eds), Global and regional vegetation fire monitoring from space: planning and coordinated international effort (pp. 199–225).

Li, Z., Nadon, S., & Cihlar, J. (2000). Satellite-based detection of Canadian boreal forest fires: Development and application of the algorithm. International Journal of Remote Sensing, 21(16), 3057–3069. https://doi.org/10.1080/01431160050144956

Lin, Z., Chen, F., Li, B., Yu, B., Shirazi, Z., Wu, Q., & Wu, W. (2017). FengYun-3C VIRR active fire monitoring: Algorithm description and initial assessment using MODIS and landsat data. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6420–6430. https://doi.org/10.1109/TGRS.2017.2728103

Ling, F., Du, Y., Xiao, F., Xue, H., & Wu, S. (2010). Super-resolution land-cover mapping using multiple sub-pixel shifted remotely sensed images. International Journal of Remote Sensing, 31(19), 5023–5040. https://doi.org/10.1080/01431160903252350

Liu, S., Li, X., Qin, X., Sun, G., & Liu, Q. (2020). Adaptive threshold method for active fire identification based on GF-4 PMI data. Journal of Remote Sensing, 24(3), 215–225. https://doi.org/10.11834/jrs.20208297

Lu, N., & Gu, S. (2016). Review and prospect on the development of meteorological satellites. Journal of Remote Sensing, 20(5), 832–841. https://doi.org/10.11834/jrs.20166194

Lv, D., Wang, P., Qiu, J., & Tao, S. (2003). An overview on the research progress of atmospheric remote sensing and satellite meteorology in China. Chinese Journal of Atmospheric Sciences, 27(4), 552–566. https://doi.org/10.3878/j.issn.1006-9895.2003.04.09

Maeda, E. E., Formaggio, A. R., Shimabukuro, Y. E., Arcoverde, G., & Hansen, M. C. (2009). Predicting forest fire in the Brazilian Amazon using MODIS imagery and artificial neural networks. International Journal of Applied Earth Observation Geoinformation, 11(4), 265–272. https://doi.org/10.1016/j.jag.2009.03.003

Nakayama, M., Maki, M., Elvidge, C. D., & Liew, S. C. (1999). Contextual algorithm adapted for NOAA-AVHRR fire detection in Indonesia. International Journal of Remote Sensing, 20(17), 3415–3421. https://doi.org/10.1080/014311699211444

Peng, G., Shen, W., Hu, D., Li, J., & Chen, Y. (2008). Method to identify forest fire based on smoke plumes mask by using modis data. Journal of Infrared and Millimeter Waves, 27(3), 185–189. https://doi.org/10.3321/j.issn:1001-9014.2008.03.007

Peterson, D., Wang, J., Ichoku, C., Hyer, E., & Ambrosia, V. (2013). A sub-pixel-based calculation of fire radiative power from MODIS observations: 1: Algorithm development and initial assessment. Remote Sensing of Environment, 129, 262–279. https://doi.org/10.1016/j.rse.2012.10.036

Pozo, D., Olrno, F. J., & Alados-Arboledas, L. (1997). Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels. Remote Sensing of Environment, 60(2), 111–120. https://doi.org/10.1016/S0034-4257(96)00117-4

Pu, R., Gong, P., Li, Z., & Scarborough, J. (2004). A dynamic algorithm for wildfire mapping with NOAA/AVHRR data. International Journal of Wildland Fire. Journal of the International Association of Wildland Fire, 13(3), 275–285. https://doi.org/10.1071/WF03054

Qin, X., Chen, X., Zhong, X., Zu, X., Sun, G., & Yin, L. (2015). Development of forest fire early warning and monitoring technique system in China. FOREST Resources MANAGEMENT(6), 45–48. https://doi.org/10.13466/j.cnki.lyzygl.2015.06.009

Qin, X., Li, X., Liu, S., Liu, Q., & Li, Z. (2020). Forest fire early warning and monitoring techniques using satellite remote sensing in China. Journal of Remote Sensing, 24(5), 511–520. https://doi.org/10.11834/jrs.20209135

Qin, X., & Yi, H. (2004). A method to ldentify forest fire based on MODIS data. Fire Safety Science(2), 83–89+60. https://doi.org/10.3969/j.issn.1004-5309.2004.02.005

Rafik, G., Jmal, M., Mseddi, W. S., & Attia, R. (2020). Recent advances in fire detection and monitoring systems: A review. Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications

Santos, S. M. B. d., Bento-Gonçalves, A., & Vieira, A. (2021). Research on wildfires and remote sensing in the last three decades: A bibliometric analysis. Forests, 12(5), 604. https://doi.org/10.3390/f12050604

Sathishkumar, V. E., Cho, J., Subramanian, M., & Naren, O. S. (2023). Forest fire and smoke detection using deep learning—¬based learning without forgetting. Fire Ecology, 19(1), 9. https://doi.org/10.1186/s42408-022-00165-0

Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. A. (2014). The new VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85–96. https://doi.org/10.1016/j.rse.2013.12.008

Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., & Morton, D. (2008). Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment, 112(5), 2711–2726. https://doi.org/10.1016/j.rse.2008.01.005

Segal-Rozenhaimer, M., Li, A., Das, K., & Chirayath, V. (2020). Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN). Remote Sensing of Environment, 237, 111446. https://doi.org/10.1016/j.rse.2019.111446

Setzer, A. W., & Pereira, M. C. (1991). Amazonia biomass burnings in 1987 and an estimate of their tropospheric emissions. Ambio, 20(1), 19–22. https://doi.org/10.2307/4313765

Shu, L., Wang, M., Zhao, F., Li, H., & Tian, X. (2005). Comparison and application of satellites in forest fire monitoring. World Forestry Research(6), 49–53. https://doi.org/10.13348/j.cnki.sjlyyj.2005.06.008

Sun, F., Li, X., Li, Z., & Qin, X. (2020). Near-real-time forest fire monitoring system with medium and high spatial resolutions. Journal of Remote Sensing, 24(5), 543–549. https://doi.org/10.11834/jrs.20209137

Sun, W., Yang, G., Chen, C., Chang, M., Huang, K., Meng, X., & Liu, L. (2020). Development status and literature analysis of China’s earth observation remote sensing satellites. Journal of Remote Sensing, 24(5), 479–510. https://doi.org/10.11834/jrs.20209464

Sun, Z., Shen, W., Wei, B., Liu, X., Su, W., Zhang, C., & Yang, J. (2010). Object-oriented land cover classification using HJ-1 remote sensing imagery. Science China Earth Sciences, 53(1), 34–44. https://doi.org/10.1007/s11430-010-4133-6

Tang, S., Qiu, H., & Ma, G. (2016). Review on progress of the Fengyun meteorological satellite. Journal of Remote Sensing, 20(5), 842–849. https://doi.org/10.11834/jrs.20166232

Tian, Y. P., Wu, Z. C., Li, M. Z., Wang, B., & Zhang, X. D. (2022). Forest fire spread monitoring and vegetation dynamics detection based on multi-source remote sensing images. Remote Sensing, 14(18), 4431. https://doi.org/10.3390/rs14184431

Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., & Tsakalides, P. (2019). Survey of deep-learning approaches for remote sensing observation enhancement. Sensors, 19(18), 3929. https://doi.org/10.3390/s19183929

Wang, W., Qu, J. J., Hao, X., & Liu, Y. (2009). Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection. Journal of Applied Remote Sensing, 3(1), 031502. https://doi.org/10.1117/1.3078426

Wang, W., Qu, J. J., Hao, X., Liu, Y., & Sommers, W. T. (2007). An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States. Remote Sensing of Environment, 108(2), 163–170. https://doi.org/10.1016/j.rse.2006.11.009

Wooster, M. J., Xu, W., & Nightingale, T. (2012). Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sensing of Environment, 120, 236–254. https://doi.org/10.1016/j.rse.2011.09.033

Wu, X., Lu, X., & Leung, H. (2020). A motion and lightness saliency approach for forest smoke segmentation and detection. Multimedia Tools Applications, 79, 69–88. https://doi.org/10.1007/s11042-019-08047-5

Xie, Y., Qu, J. J., Xiong, X., Hao, X., Che, N., & Sommers, W. (2007). Smoke plume detection in the eastern United States using MODIS. International Journal of Remote Sensing, 28(10), 2367–2374. https://doi.org/10.1080/01431160701236795

Xie, Z., Song, W., Ba, R., Li, X., & Xia, L. (2018). A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data. Remote Sensing, 10(12), 1992. https://doi.org/10.3390/rs10121992

Xu, G., & Zhong, X. (2017). Real-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8. Remote Sensing Letters, 8(11), 1052–1061. https://doi.org/10.1080/2150704X.2017.1350303

Xu, H., Zhang, G., Zhou, Z., Zhou, X., & Zhou, C. (2022). Forest fire monitoring and positioning improvement at subpixel level: Application to Himawari-8 fire products. Remote Sensing, 14(10), 2460. https://doi.org/10.3390/rs14102460

Xu, W., Wooster, M. J., He, J., & Zhang, T. (2020). First study of Sentinel-3 SLSTR active fire detection and FRP retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote Sensing of Environment, 248, 111947. https://doi.org/10.1016/j.rse.2020.111947

Xu, W., Wooster, M. J., Polehampton, E., Yemelyanova, R., & Zhang, T. (2021). Sentinel-3 active fire detection and FRP product performance—Impact of scan angle and SLSTR middle infrared channel selection. Remote Sensing of Environment, 261, 112460. https://doi.org/10.1016/j.rse.2021.112460

Yi, H., Ji, P., He, X., & Zhang, Y. (1996). Study on monitoring and early alarm technique of forest fire using satellite data. Remote sensing technology and application, 11(1), 40-46. https://doi.org/10.11873/j.issn.1004-0323.1996.1.40

Yin, J., He, R., Zhao, F., & Ye, J. (2023). Research on forest fire monitoring based on multi-source satellite remote sensing images. Spectroscopy and Spectral Analysis, 43(3), 917–926. https://doi.org/10.3964/j.issn.1000-0593(2023)03-0917-10

Yin, Z., Chen, F., Lin, Z., Yang, A., & Li, B. (2020). Active fire monitoring based on FY-3D MERSI satellite data. Remote sensing technology and application, 35(5), 1099–1108.

Yu, J., Li, Y., Zheng, X., Zhong, Y., & He, P. (2020). An effective cloud detection method for Gaofen-5 images via deep learning. Remote Sensing, 12(13), 2106. https://doi.org/10.3390/rs12132106

Zhang, D., Huang, C., Gu, J., Hou, J., Zhang, Y., Han, W., Zhang, Y., Han, W., Dou, P., & Feng, Y. (2023). Real-Time wildfire detection algorithm based on VIIRS fire product and Himawari-8 data. Remote Sensing, 15(6), 1541. https://doi.org/10.3390/rs15061541

Zhang, N., Sun, L., & Sun, Z. (2022). GF-4 satellite fire detection with an improved contextual algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 163–172. https://doi.org/10.1109/JSTARS.2021.3132360

Zhang, Q. X., Lin, G. H., Zhang, Y. M., Xu, G., & Wang, J. J. (2018). Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images. Procedia Engineering, 211, 441–446. https://doi.org/10.1016/j.proeng.2017.12.034

Zhang, T., Wooster, M. J., & Xu, W. (2017). Approaches for synergistically exploiting VIIRS I- and M-Band data in regional active fire detection and FRP assessment: A demonstration with respect to agricultural residue burning in Eastern China. Remote Sensing of Environment, 198, 407–424. https://doi.org/10.1016/j.rse.2017.06.028

Zheng, W., Shao, J., Wang, M., & Liu, C. (2013). Dynamic monitoring and analysis of grassland fire based on multi-source satellite remote sensing data. Journal of Natural Disasters, 22(3), 54–61. https://doi.org/10.13577/j.jnd.2013.0308

Zheng, Y., Zhang, G., Tan, S., Yang, Z., Wen, D., & Xiao, H. (2023). A forest fire smoke detection model combining convolutional neural network and vision transformer. Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1136969

Zhou, X., Feng, D., Xie, Y., Tao, Z., Lv, T., & Wang, J. (2021). Radiometric Cross-Calibration of GF-4/IRS Based on MODIS measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6807–6814. https://doi.org/10.1109/JSTARS.2021.3091977

Zhou, X., & Wang, X. (2006). Validate and lmprovement on arithmetic of ldentifying forest fire based on EOS-MODIS data. Remote sensing technology and application, 21(3), 206–211. https://doi.org/10.3969/j.issn.1004-0323.2006.03.007

Zhukov, B., Lorenz, E., Oertel, D., Wooster, M., & Roberts, G. (2006). Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sensing of Environment, 100(1), 29–51. https://doi.org/10.1016/j.rse.2005.09.019

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Ying Zheng, Gui Zhang, Sanqing Tan, Lanbo Feng

Downloads

Download data is not yet available.