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 Cover Story
Siniscola, situated on Sardinia's northeastern coastline, Italy, (39 m above sea level) 
encapsulates a mosaic of  historical, cultural, and developmental dynamics. Tracing 
its origins to the Nuragic civilization, the village's evolution has been imprinted by 
successive influences including Phoenician, Carthaginian, and Roman epochs, con-
tributing to its multifaceted identity. With a population of  approximately 11,000 
inhabitants, Siniscola is anchored by its agrarian heritage. The landscape is adorned 
with cereal fields, vineyards, and olive groves, representing its agricultural heritage 
and intertwining with the island's broader agricultural context. Distinctive to Sinis-
cola is the "pompia," a citrus fruit renowned for its rough, thick, and irregular skin, 
used to create the eponymous sweet delicacy. "Sa pompia" has been cultivated in 
this region since antiquity. Representing traditional Siniscola cuisine is the iconic 
dish "sa suppa Thiniscolesa," a culinary delight.
Siniscola's development is reflected in its infrastructure evolution. From its forti-
fied origins, the village has transitioned into a bridge between tradition and moder-
nity. The historical significance of  both the tourism and agriculture industries 
mirrors the economic fluctuations that have shaped Sardinia's trajectory. The con-
temporary rise in tourism, allured by pristine beaches, marks the most recent phase 
of  transformation. Essentially, Siniscola captures Sardinia's essence—a harmony 
of  past and present. The coexistence of  age-old traditions and modern progress 
reflects the island's resilience. In this coastal enclave, Sardinia's story resonates—a 
testament to its journey guided by echoes of  the past, embracing the timeless sea 
rhythms and the beauty of  its unspoiled beaches.
(Giuseppe Pulighe, Researcher at CREA - Research Centre for Agricultural Policies 
and Bioeconomy, via Po 14, 00198 Rome, Italy.)
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Perspective 

Trapped in the Past: The Decline of Italian Olive Groves in the Face 
of Traditional Visions and Policies, Emerging Challenges and  
Innovation 
Giuseppe Pulighe 

Research Centre for Agricultural Policies and Bioeconomy, 00184 Rome, Italy; giuseppe.pulighe@crea.gov.it 

Abstract: Italy has long been a key player in olive crop production, but the sector is currently facing an 
unprecedented crisis. This is evident by shrinking cultivated areas, farms, production levels, and investments. 
Multiple factors contributed to this decline, including traditional cultivation practices, limited innovation and 
competitiveness, siloed-oriented policies, landscape protection measures, and unsustainable agricultural sys-
tems. Phytosanitary issues, such as the spread of Xylella fastidiosa and the effects of climate change and 
drought, further compounded these challenges. Over the last decade, the sector has undergone preservation 
efforts focused on the perpetuation of traditional narratives and implementing policies to protect smallholder 
farmers, old cultivars, and safeguard traditional agri-food products. However, these approaches hinder the 
sector’s ability to adapt and compete in the market, perpetuating stagnation rather than driving the necessary 
changes. To reverse this decline, the olive sector must undergo necessary evolution, as seen in other sectors, 
such as viticulture and tree crops. This entails embracing a comprehensive strategy encompassing research 
and development, infrastructure investment, the promotion of modern cultivation techniques, and policies that 
support the sector’s evolution. Without such measures, the future of Italy’s olive industry remains uncertain, 
with significant implications for its cultural heritage and economy. Italy must recognize the economic and 
cultural consequences of continued decline and take immediate action for long-term viability. 

Keywords: olive crop decline; siloed-oriented policies; CAP; competitiveness; sustainability 

1. Introduction
Italy’s olive groves (Olea europaea L.) and olive oil industry have been an essential part of 

the country’s cultural and economic heritage for centuries (Bartolini & Petruccelli, 2002). Italy is 
one of the world’s leading countries in olive crop production and land use of olive groves, account-
ing for approximately 11% of the world’s cultivated area (Torrecillas & Martínez, 2022). However, 
over the past few decades, the olive sector is facing a crisis of unprecedented proportions, with a 
decline well represented by numbers (Cola & Sarnari, 2020). The downturn of the olive sector is 
reflected in several statistical indicators, such as cultivated areas, olive farms, production, oil mills, 
trade balance, and investments. The total olive-growing area in Italy is approximately 1,129 million 
hectares in 2021, equal to 8% of the utilized agricultural area (Council for Agricultural Research 
and Economics, 2022). Although cultivated areas have been quite stable over the past decade, ‘It-
aly’s olive orchard’ is characterized by the massive presence of ancient olive trees (only 3% of the 
olive trees are less than 11 years old) and relatively low tree density per hectare (Figure 1). The 
most recent data indicate a contraction with a loss of about 17,000 hectares almost entirely confined 
to the Apulia (the most important region for olive production in Italy) due to the effects of infection 
of Xylella fastidiosa first appeared in 2013 (Schneider et al., 2020). 
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Figure 1. Traditional olive grove in Italy with wide planting spacing. Credit: Achim Ruhnau, Unsplash. 

The general agricultural census data of the year 2020 indicate that the olive sector includes 
619,378 farms, with a decrease of about one-third from the 2010 census. For production, the data 
indicate a trend decline beyond the traditional olive tree alternate bearing, which furthermore is 
more pronounced in ancient productive trees. Over the past decade, the production of olive oil in 
Italy has experienced a significant decline, dropping from more than 500,000 tons in 2010 to ap-
proximately 235,000 tons in 2022 (Cola & Sarnari, 2020; International Olive Council, 2023). 

The fragmentation of the production structure is also evident from the high number of active 
mills, amounting to 4,448 (CREA, 2022), in comparison with Spain where there are less than 1,700 
(Cola & Sarnari, 2020). Although the widespread presence of mills can ensure rapid olive pro-
cessing and thus the hygienic-nutritional quality of the oil, as well as an added value in terms of 
tourism (Lombardo et al., 2022), it also results in a low average production per olive mill of only 
74 tons in 2021. 

Regarding trade balance, Italy is positioned as a net importer of olive oil, with a deficit 
amounting to 263,000 tons and 62 million euros in 2019, continuing the reduction observed in the 
past three years (Cola & Sarnari, 2020). Spain is the main supplier, accounting for more than 60 
percent of imported olive oil, mainly extra-virgin olive oils (EVOO). In the context of worldwide 
olive oil production, an annual average of 3 million tons of olive oil is harvested, with the European 
Union (EU) being a prominent contributor for approximately 2 million tons of this annual yield. 
Among the key Member States, Spain leads with 66% of EU production, trailed by Italy at 15%, 
Greece at 13%, and Portugal at 5%. The EU constitutes the largest consumer of olive oil, with an 
approximate annual consumption of 1.5 million tons, and holds the position of the foremost ex-
porter of olive oil, with an annual export volume of approximately 570,000 tonnes (IOC, 2023). 
Overall, the causes of this decline are multifaceted and weave together traditional views of cultiva-
tion, scarce innovation and competitiveness, lack of cooperation, siloed-oriented policies, land-
scape protection and unsustainable agricultural systems. In addition, in recent years the exacerba-
tion of phytosanitary problems such as Xylella fastidiosa and the accentuation of climate change 
and drought have exacerbated the conditions of many operators in the olive supply chain. It has 
been estimated that if the expansion of the infected area is not stopped, the economic impact on 
Italy could grow to 5.2 billion euros (Schneider et al., 2020). 

The convergence of these challenges has hindered the progress of the olive sector, resulting 
in its apparent stagnation in terms of farm structure and the agri-food system. As a result, the sector 
has been unable to attain the transition necessary for achieving market competitiveness. 

In this essay, we claim that the olive sector stagnation is strongly influenced by the peasantry 
and utopian envision and narratives (self-supported by the agricultural policies and subsidies) that 
would like to safeguard smallholder farmers and their income, old cultivars, agrarian landscape and 
traditional agrifood products, which instead just perpetuates the status quo. 

We argue that a necessary evolution is required in the olive sector, similar to advancements 
observed in other agricultural sectors such as viticulture and fruit growth. It is crucial to strike a 
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balance between preserving cultural heritage and embracing necessary changes to modernize the 
industry, promote sustainability, and ensure its long-term viability. By challenging traditional vi-
sions and narratives, fostering disruptive innovations, enhancing cooperation, and implementing 
supportive policies, the olive sector can overcome its current challenges and regain its position as 
a dynamic and competitive industry. Taking proactive measures to address the multifaceted causes 
of decline will not only safeguard Italy’s cultural heritage but also contribute to economic growth 
and sustainability in the agricultural sector. In the following, we will critically discuss these multi-
faceted challenges and explore the role of innovation in revitalizing the sector. 

2. Characteristics of the Value Chain 
The value chain for the olive sector in Italy encompasses a comprehensive set of characteris-

tics that span the pillars of agricultural production, industrial processing, and commercialization 
phases. Notably, a significant proportion of agricultural farms in this sector exhibit an average size 
of less than two hectares, highlighting the predominance of small-scale cultivation practices (Cola 
& Sarnari, 2020). 

The modest size of these farms is linked to high production costs and reduced inclination for 
innovation and market orientation, as evidenced by the higher average age of the farmers involved. 
Additionally, the presence of an aging workforce is more pronounced in the olive industry com-
pared to other agricultural sectors. On the other hand, the production stage of the olive value chain 
in Italy benefits from a wealth of regional cultivars, encompassing a remarkable diversity of more 
than 500 distinct landraces (Pannelli & Perri, 2012). 

However, this abundance of regional cultivars can pose challenges if their features and poten-
tial are not adequately evaluated and valorized. Indeed, despite the high number of oils with Pro-
tected Designation of Origin (PDO) or Protected Geographical Indication (PGI) (Lombardo et al., 
2021), these landraces have a minimal impact on the overall production volumes and, furthermore, 
are often poorly recognized or unknown to consumers (Cola & Sarnari, 2020). It seems intuitive 
how it is impossible to individually enhance all these cultivars in the market when instead a strategy 
would be needed to synthesize this botanical richness into new pathways. 

As previously mentioned, the industrial phase of the value chain is characterized by a signif-
icant concentration of small olive oil mills, predominantly located in southern Italy. In addition to 
small mills, the olive sector in Italy also comprises large companies that purchase olive oil and 
engage in bottling operations. However, the presence of a large number of mills can result in di-
minished economic efficiency, elevated production costs, and a postponed implementation of tech-
nological advancements. These factors, in turn, have the potential to impede the achievement and 
maintenance of high-quality standards in olive oil production. 

Despite being a major producer, Italy holds the distinction of being the world’s foremost im-
porter of olive oil, as well as the second largest exporter. As indicated above, large bottling com-
panies import the product to enhance its value through export. Italy’s trade deficit in olive oil ac-
counts for 28% of the total volume but represents just 2% of the corresponding value in commercial 
exchanges (Cola & Sarnari, 2020). The olive sector’s significant export orientation underscores a 
key advantage that should be further fostered and expanded. 

3. Traditional Visions 
The olive groves hold a significant place as an iconic and symbolic representation of the Med-

iterranean regions, reflecting their extensive agricultural heritage and playing a crucial role in shap-
ing the landscape. Beyond their cultural and historical significance, the olive groves have substan-
tial economic, cultural, and ecological importance, along with viticulture and cereal cultivation 
(Giourga & Loumou, 2002). The olive tree, along with the vine and wheat, also holds a significant 
and sacred role within the symbolism of Christianity, representing consecrated alimentary products 
such as oil, wine, and bread. Its presence shapes the visual aesthetics of the Mediterranean land-
scape, reflecting a long-standing agricultural tradition deeply intertwined with the cultural identity 
of the local communities. Culturally, olives trees, local landraces and olive oil have deep-rooted 
traditions and are integral to Mediterranean cuisine. They are essential components of local dishes, 
representing a shared culinary heritage. Furthermore, olives and olive branches have symbolic 
meanings, representing peace, prosperity, and unity, and are often associated with the cultural iden-
tity of the Mediterranean regions. From an ecological perspective, olive groves contribute to the 
preservation of biodiversity and the conservation of natural resources. These groves create unique 
habitats for various plant and animal species, promoting ecological diversity (Fekete et al., 2023). 
Traditional and labor-intensive cultivation practices, including terracing, in the past have bolstered 
soil conservation and fostered sustainable land resource utilization in olive-growing regions 
(Giourga & Loumou, 2002). Nevertheless, as suggested by Duarte et al. (2008) traditional olive 
orchards have limited economic sustainability. Their viability depends on accepting reduced 
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opportunity costs for family labor and engaging in part-time olive growing, which ultimately results 
in an economically marginal status. 

The culmination of these intertwined elements, perpetuated for centuries, remains evident in 
contemporary times, where Italian olive cultivation epitomizes a narrative deeply ingrained in peas-
ant traditions. This narrative would guarantee the preservation of the timeless landscape, local olive 
landraces, and a production system rooted in traditional peasant practices. However, these visions, 
while preserving the cultural heritage, have contributed to the decline of the industry by failing to 
address the evolving needs of olive farming in the face of mounting challenges. 

4. The Role of the Policies 
The EU has historically placed significant attention on the olive oil sector, offering subsidies 

to support farmers engaged in olive oil production through the Common Agricultural Policy (CAP) 
(de Graaff & Eppink, 1999). Support for the olive sector has taken various forms, with consumption 
aid playing a significant role as a primary form until 1994. Between 1994 and 1999, consumption 
subsidies were significantly reduced and eventually abolished in 1998. They were gradually re-
placed by subsidies aimed at olive oil production. Between 2000 and 2005, there were relatively 
few changes in the support measures for the olive sector, while the 2004 reform incorporated sup-
port for olive oil production into the single payment scheme (Agrosynergie, 2009). Decoupling has 
been permitted in order to prevent the abandonment of olive groves in marginal areas, accompanied 
by the introduction of cross compliance for Good Agricultural and Environmental Conditions 
(GAEC) (Duarte et al., 2008). The CAP for the period 2023–2027 in Italy introduces targeted sec-
toral support for the production of olive oil and table olives. This support is implemented through 
co-financing programs that focus on the operational programs of producer organizations and their 
associations. The allocation of funds is closely tied to the actual production levels delivered to the 
market. Moreover, the CAP 2023–2027 also introduces eco-schemes which should encourage farm-
ers to adopt environmentally friendly practices, by obtaining up to € 586 hectare (AgroNotizie, 
2023). Substantially, the focus of the interventions is still on maintaining the status quo and tend to 
discourage innovation or does not encourage investment capacity and strategic orientation. 

One of the main problems of the sector policies is that have demonstrated limited effectiveness 
as they have primarily prioritized problem mitigation rather than addressing the underlying causes. 
The logic of policy intervention has consistently treated the sector as static, primarily because olive 
growing is a long-term endeavor, leading to inertia and slower emergence of changes compared to 
annual production. Indeed, the various reforms of the CAP have consistently overlooked the central 
role of olive growers in terms of supporting their competitiveness and entrepreneurial capabilities. 
Instead, the focus of these reforms has primarily been on the widespread allocation of aid to small-
scale producers following price-production dynamics, rather than tailoring interventions to address 
the specific requirements and challenges associated with various forms of olive cultivation and land 
management, or new consumption habits. 

For instance, one aspect that has been insufficiently addressed in the reforms is the issue of 
fragmented land structures, which impose limitations on the competitiveness and investment ca-
pacity within the olive sector. It is worth noting that the average farm size in Apulia, for instance, 
is reported to be approximately 1.7 hectares, significantly smaller compared to the average farm 
size of 8 hectares observed in Andalusia in Spain. 

As stated by Duarte et al. (2008) the main causes of abandonment are closely related to farm 
profitability, the main issue being the low yields of traditional olive groves. This low profitability 
is further exacerbated by the size of the farms, which hampers the implementation of innovative 
strategies. This interconnected relationship forms a self-reinforcing cycle wherein limited profita-
bility due to low yields contributes to farm abandonment, and the inability to invest in productivity-
enhancing measures further perpetuates the cycle of low profitability. 

Evidence that policies intervention in the sector has not promoted an increase in high quality 
and competitive products in the market is indicated by consumer behaviors. Although Italy has the 
highest number of certified EVOO recognized as PDO or PGI (Lombardo et al., 2021), recent find-
ings suggest that only 36% of consumers broadly understood health claims on EVOO (Lombardi 
et al., 2021). Despite various studies indicated an increasing willingness to pay for premium prod-
ucts (Di Vita et al., 2021), Lombardi et al. (2021) argued that low perceived health claims on EVOO 
hinders the ability of producers to take advantage derived from higher prices of the perceived high 
quality of these products. 

5. The Innovation Imperative 
The gradual decline of the olive sector in Italy highlights the urgent need for innovation. This 

calls for a combination of policy reforms and significant cultural shifts to support the necessary 
changes. To tackle the aforementioned challenges, the olive sector needs to initiate innovation in 
its growing practices. This involves adopting a new approach that moves away from traditional 
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orchards and towards a model that emphasizes farm-centered strategies and farmer-led with robust 
professional skills. An entrepreneurial mindset should guide this transformation, with a strong fo-
cus on incorporating innovation and leveraging new technologies at its core, as in the case of grape 
growing and fruit cultivation. 

A viable innovation path is the shift toward intensification adopting high density or super high 
density planting system which allow for huge increases in production efficiency with a reduction 
of production costs (Lo Bianco et al., 2021) (Figure 2). 

Previous research has established that these system plantings based on integral mechanization 
can be both economic and environmentally sustainable (Camposeo et al., 2022), able to improve 
soil carbon sequestration (Mairech et al., 2020). As suggested by Camposeo et al. (2021) super high 
density planting systems are able to produce nutraceutical EVOOs rich in polyphenols compounds, 
as demonstrated with “Lecciana” that is the first olive cultivar of Italian descent suitable for super 
high-density orchards. 

 
Figure 2. Mechanized harvesting in a super high density olive orchard in Italy. 

A recent study by Flamminii et al. (2023) conducted in the Abruzzo region examined alloch-
thonous cultivars suitability for super high density systems and concluded that it is possible to 
obtain nutraceutical EVOOs comparable to traditional ones. 

In such a framework, innovation’s contribution to revitalizing Italian olive farming should 
include: 
• New planting systems. Should ensure tree canopies suitable for mechanical operations and 

precision management. 
• New suitable cultivars. The adoption of new olive cultivars, adapted to the changing climate, 

suitable for new planting systems, resistant to pests and diseases, low vigor, with better yields 
and oil quality. In the future, new plantations will be benefiting from new cultivars obtained 
with conventional and new breeding techniques. 

• Mechanization. The adoption of integrated mechanization in olive farming for all cultivation 
stages can help reduce labor costs and improve efficiency. Mechanization facilitates the swift 
processing of olives at the mills within a few hours of harvest. 

• Precision agriculture. The use of disruptive agriculture techniques, such as sensors, drones, 
and data analytics, to optimize irrigation and water management, fertilization, and pest man-
agement. Precision agriculture can help reduce the use of resources, increase yields, and im-
prove oil quality. 

• Climate-Smart Certification and Labeling: Implementing a climate-smart certification and la-
beling system for olive products can help consumers identify products that are produced using 
sustainable and climate-friendly practices. This can create incentives for farmers to adopt en-
vironmentally friendly approaches and differentiate their products in the market. 

• Investment in education and training. Providing continuous education and training programs 
to olive farmers can ensure that they are up-to-date with the latest innovations, best practices, 
and market trends. Well-informed farmers are better equipped to make informed decisions 
and adapt to changing circumstances effectively. 
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To foster the growth of the olive oil sector in Italy, the government should adopt a compre-
hensive set of development policies that encompass various dimensions. Firstly, investing in new 
olive trees plantings to increase and rationalize production oriented only towards producing 
nutraceutical EVOOs products. Secondly, prioritizing research and development efforts to enhance 
mechanization practices becomes crucial. Considering the impending labor shortage in this sector, 
its significant impact on costs and final income is evident. Thirdly, it becomes imperative to imple-
ment targeted measures for the modernization of olive mills and their strategic placement within 
the territory. These innovative solutions require research, investment, and collaboration between 
farmers, researchers, policymakers, and other stakeholders. The adoption of these solutions can 
help ensure the long-term sustainability of Italian olive farming and contribute to the development 
of a more resilient and vibrant rural economy. It is only through innovation that the Italian olive 
farming industry can overcome the challenges it faces and ensure a sustainable future. 

6. Summary 
The paper provides insights into the current state of Italian olive groves, discussing their 

strengths and weaknesses. It highlights the factors contributing to their decline, while also acknowl-
edging the potential of Italian olive oil sector and its ability to increase production, although it 
currently falls short of fulfilling domestic needs. To address these challenges, adopting new sus-
tainable practices is crucial. One such measure involves increasing planting densities to improve 
productivity. However, it’s essential to balance this approach with meeting minimum sustainability 
goals, including considerations for yield, labor, costs, as well as proper irrigation and fertilization 
practices. The perception of olive trees as low-maintenance crops has hindered advancements in 
care and management techniques. Nevertheless, there are opportunities to enhance the productivity 
of traditional olive groves through improved pruning, biostimulant-based fertilization, and incor-
porating modern machinery. Moreover, integrated mechanization could help counterbalance the 
potential scarcity of labor in the olive sector in the future. 

Embracing innovation and sustainable practices is vital for the long-term success of the olive 
industry. A forward-looking approach should consider promoting the coexistence of multiple olive 
cultivation systems, such as terraced olive agro-ecosystems, catering to diverse needs and consum-
ers. By diversifying and meeting varying market demands, the Italian olive industry can enhance 
its resilience and competitiveness. In conclusion, the revitalization of Italian olive groves necessi-
tates the adoption of innovative and sustainable practices, alongside a willingness to challenge tra-
ditional perspectives. By taking these steps, the olive sector can unlock its full quality potential, 
fulfill domestic demands, and ensure a prosperous future for both olive growers and consumers. 
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Abstract: With satellite remote sensing technology blooming, satellite remote sensing has become a common 
tool to detect forest fires, and played an important role in forest fire monitoring. This paper sort the research 
status and progress on satellite remote sensing monitoring for forest fires to provide directions and insights 
for subsequent research and applications. Through reviewing the literature on satellite remote sensing moni-
toring for forest fires, we present satellites and sensors for forest fire monitoring, describe forest fire monitor-
ing methods through brightness temperature detection and smoke detection, and summarize current problems 
of satellite remote sensing monitoring of forest fires. Despite forest fire satellite remote sensing monitoring 
algorithms are becoming increasingly mature, it is not without problems such as slow migration of cloud 
detection algorithms, difficulties in unifying spatial and temporal characteristics, and difficulties in detecting 
small fires and low-temperature fires. Finally, in response to the problems identified, we list some recommen-
dations with a view to providing useful references for future research on forest fire monitoring with satellite 
remote sensing. 

Keywords: satellite remote sensing; sensors; forest fire monitoring; forest fire brightness temperature; forest 
fire smoke 

1. Introduction
The introduction should briefly place the study in a broad context and highlight why it is 

important. It should define the purpose of the work and its significance. The current state of the 
research field should be carefully reviewed and key publications cited. Please highlight controver-
sial and diverging hypotheses when necessary. Finally, briefly mention the main aim of the work 
and highlight the principal conclusions. As far as possible, please keep the introduction compre-
hensible to scientists outside your particular field of research. Forest fire is a worldwide natural 
disaster. As it can destroy forest resources and cause global environmental pollution, governments 
are paying more attention to it. Forest fires occur randomly and unexpectedly, therefore timely 
monitoring of forest fires helps to reduce the loss caused by them. 

With the vigorous development of satellite remote sensing technology, satellite remote sens-
ing has become a frequently used tool for forest fire monitoring. When monitoring forest fires, 
relying on “low and medium altitude” tools is not only high-cost and technically difficult, but 
leaves blind spots for forest fire monitoring (Shu et al., 2005). However, satellite sensors can pro-
vide information with different spatial resolutions and different spectra on a global scale (Chuvieco 
et al., 2020), with the advantages of large monitoring range, short response time and strong anti-
interference ability. They can effectively make up for the shortcomings, regarding the small mon-
itoring range, poor stability and high cost, of “low altitude” cameras in forest areas (Barmpoutis et 
al., 2020; Wu et al., 2020), and solve problems of being subject to air control, weather conditions 
and short range of “mid-altitude” Unmanned Aerial Vehicles (UAVs) (Howard et al., 2018). Thus, 
satellite sensors meet the need for timely monitoring of forest fires in large areas (Qin et al., 2015). 
There are currently two main ways of using remote sensing technology for forest fire monitoring. 
One is to obtain the brightness temperature information through the infrared band of satellite re-
mote sensing. The flames produced by forest fires have distinctive radiative characteristics, con-
trasting markedly with the background radiation of surrounding areas (Sun et al., 2020). The other 
is to detect forest fire smoke produced during forest fires. which can detect forest fires earlier than 
brightness temperature detection. In the early stages of forest fires, the incomplete combustion of 
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combustible materials can produce large amounts of smoke (Zheng et al., 2023), which can help to 
detect forest fires earlier than monitoring through brightness temperature detection. 

This paper reviews the progress of research on satellite remote sensing for forest fire moni-
toring. We begin with an overview of the development and properties comparison of meteorologi-
cal satellites and sensors commonly used for forest fire monitoring (Section 2). We then compared 
and analyzed methods of monitoring forest fires using brightness temperature detection and smoke 
detection (Section 3). Finally, we discuss the existing problems and future directions of satellite 
remote sensing monitoring for forest fires (Section 4). The above studies can provide useful refer-
ences for the selection of satellites for forest fire monitoring, the adoption of monitoring methods, 
and the improvement of forest fire monitoring accuracy to point the way to further research. 

2. Overview and Application of Meteorological Satellites and Sensors for Forest Fire Moni-
toring 

2.1. Overview of Meteorological Satellites and Sensors for Forest Fire Monitoring 
In recent years, with the advancement of remote sensing technology, the launch of a large 

number of remote sensing satellites and the low cost of usage, scholars worldwide have studied 
satellite remote sensing monitoring for forest fires. 

At present, domestic and foreign mainly use meteorological satellites to monitor forest fires. 
According to their orbits, meteorological satellites are divided into two main categories: Polar Orbit 
Meteorological Satellite and Geostationary Meteorological Satellite. The capabilities’ comparison 
of the two satellites is shown in Table 1. The Geostationary Meteorological Satellite, also known 
as Geosynchronous Satellite, usually orbits at an altitude of around 36,000 km, matching the speed 
of the Earth’s rotation. The Geostationary Meteorological Satellites currently in orbit include 
China’s Fengyun-2 (FY-2) and Fengyun-4 (FY-4), the US GEOS series, Japan’s Himawari-9, Ko-
rea’s GEO-KOMPSAT-2A(GK2A), etc. The Polar Orbit Meteorological Satellite, also known as 
Sun-synchronous Orbit Satellite, usually orbits at an altitude of around 500 to 800 km, travelling 
along a near-polar orbit between the North Pole and the South Pole. Due to the large inclination 
angle of the orbit of such satellite, it can only make earth observations during each fly-by. The 
Polar Orbit Meteorological Satellites presently in orbit include China’s Fengyun-3 (FY-3), the US 
NOAA and the European Metop series, etc. 

Table 1. The capability comparison between Polar Orbit Meteorological Satellite and Geostationary Meteor-
ological Satellite. 

Capability Geostationary Meteoro-
logical Satellite 

Polar Orbit Meteoro-
logical Satellite 

Providing Continuous Observation Data √ × 
Temporal Resolution High Low 

Spatial Resolution Low High 
Enabling Continuous Monitoring of the Same Area over a Long Period √ × 

Orbital Position Settled Unsettled 
Orbital Period Long Short 

Satellite systems are based on sensors (Rafik et al., 2020). acquire images at multiple spatial 
and temporal resolutions by carrying different sensors. Satellites acquire images with multiple spa-
tial and temporal resolutions by carrying different sensors. Sensors on board Geostationary Mete-
orological Satellites that are commonly used for forest fire monitoring include Advanced Himawari 
Imager (AHI), Advanced Baseline Imager (ABI), Advanced Geostationary Radiation Imager 
(AGRI), etc. Sensors on board Polar Orbit Meteorological Satellite include Advanced Along-track 
Scanning Radiometer (ATSR), Advanced Very High Resolution Radiometer (AVHRR), Moderate-
resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer (VIIRS), 
etc. 

The world’s first meteorological satellite is the US TIROS-1, which was launched in 1960 
and transmitted back the first satellite cloud images (Lv et al., 2003). From 1975-2010, the US 
launched four generations of the GOES series geostationary satellites. The temporal resolution, 
number of channels and imaging speed of the satellites have been gradually increased, and moni-
toring capabilities have been enhanced (Fang, 2014). Meanwhile, the third generation US Polar 
Orbit Meteorological Satellite, NOAA, went into operation in 1978, equipped with the AVHRR 
(Lu & Gu, 2016). In 2011, the SNPP satellite was successfully launched, primarily carrying the 
VIIRS with operational microlight detection capability.  

The development of meteorological satellites in Europe began with the first Geostationary 
Meteorological Satellite Meteosat-1, launched in 1997. Europe’s first Polar Orbit Meteorological 
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Satellite, Metop-A, was launched in 2006. Despite its late start, the satellite had a high technological 
starting point, with rapid advances in its imaging quality and the Infrared Atmospheric Sounding 
Interferometer (IASI) on board (Lu & Gu, 2016). 

With the improvement of satellite remote sensing technology, Japan launched the Geostation-
ary Meteorological Satellite Himawari-8 in 2014, equipped with the AHI, which is mainly used for 
the monitoring of natural disasters (He et al., 2020). And then the Himawari-9 was launched in 
2016 and was to be in service in 2022. 

China is one of the few countries in the world with both Geostationary Meteorological Satel-
lites and Polar Orbit Meteorological Satellites (Tang et al., 2016). China has launched eight Polar 
Orbit Meteorological Satellites and nine Geostationary Meteorological Satellites, completing the 
transformation of meteorological satellites from experimental applications to operational services 
(Sun et al., 2020). In addition, China’s High-resolution Earth Observation System was started at 
2010. And GF-4 is China’s first relatively high-resolution remote sensing satellite (Sun et al., 2020). 

2.2. Applications of Meteorological Satellites and Sensors for Forest Fire Monitoring 
As early as the 1980s, techies began being abuzz about research on forest fire monitoring 

using remote sensing technologies. With the advantages of the vast synchronous observation area, 
broad detection band and rapid sampling time, the AVHRR sensor equipped on NOAA satellite 
(NOAA/AVHRR), since its successful launch in 1978, has become the main data source for do-
mestic and international scholars using satellites to monitor forest fires. Flannigan and Haar at-
tempted to use NOAA/AVHRR to monitor the forest fire in north-central Alberta in June 1982. 
However, experiment results indicated that the satellite’s visual field is susceptible to clouds and 
smoke, making it difficult to monitor forest fires (Flannigan & Haar, 1986). In 1996, Yi et al. con-
ducted a simulation experiment based on NOAA/AVHRR data for the southwest forest of China, 
where forest fires occurred frequently and were difficult to monitor, and their results were basically 
at a practical level (Yi et al., 1996). In 1997, Pozo et al. compared forest fire information in south-
eastern Spain obtained by AVHRR Band 3 and 4, with real information of forest fires provided by 
the Andalusian Regional Government Environmental Directorate (Pozo et al., 1997). They verified 
the advantages of using remote sensing techniques for forest fire monitoring in forests containing 
complex features that are difficult to monitor fires by other tools. In 2012, to eliminate fire signal 
noise due to solar reflections, He et al. introduced a new test to filter forest fire detection results 
based on the 2004 mid-infrared band data of NOAA/AVHRR, reducing the number of false fire 
detections by 27.1% (He & Li, 2012). During this period, the accuracy of forest fire monitoring 
using remote sensing still needed to be improved, but the greater value of forest fire monitoring 
using remote sensing technology was initially confirmed. 

At the beginning of the 21st century, the MODIS sensor began collecting remote sensing in-
formation as part of NASA’s Earth Observing System (EOS) in 1999 on board the Terra satellite 
and in 2002 on board the Aqua satellite. MODIS sensor has specific bands and fire products for 
fire monitoring and has therefore become a research hotspot in the field of remote sensing moni-
toring for forest fires during this period. In 2002, Justice, a professor of the University of Maryland, 
and Kufuman, a staff of Goddard Space Flight Center, led a research team to conduct a simulation 
experiment on forest fire monitoring in African forests using MODIS data, and validated the results 
of the simulation experiment using the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) data (Justice et al., 2002). In 2003, Giglio et al., members of the above re-
search team, tested the effectiveness of MODIS data for forest fire detection and found that MODIS 
data were subject to interference from water et al. resulting in high false alarm rates for forest fire 
monitoring and difficulties in detecting small or low-temperature forest fires (Giglio et al., 2003). 
In 2007, they used MODIS data to compensate for the limitations of the Visible and Infrared Scan-
ners in detecting forest fires in tropical and subtropical regions due to differences between day and 
night (Giglio, 2007). In 2016, Giglio et al. studied the 6th Version of MODIS data (collection 6) 
compiled by NASA, which improved the forest fire detection performance of MODIS by reducing 
false alarms caused by small bare land and missed alarms caused by thick smoke cover occurred in 
Version 5 data (Giglio et al., 2016). In 2004, Qin et al. detected forest fires in China, with an accu-
racy of 80%, based on band characteristics of MODIS (Qin & Yi, 2004). Furthermore, scholars 
collected information from higher spatial resolution sensors to validate the performance of MODIS 
for forest fire monitoring. In 2008, Schroeder et al. analyzed the MODIS fire detection product 
MOD14 using remote sensing imagery collected from the ASTER sensor and ETM+ sensor with 
the spatial resolution of 30m and showed that MODIS has difficulty detecting fires under the tree 
canopies (Schroeder et al., 2008). During this period, the complex environmental background of 
forests had a greater impact on forest fire monitoring using MODIS and required reliability verifi-
cation through extensive experiments. But the feasibility and prospect of MODIS for forest fire 
monitoring was confirmed. Until 2019, MODIS was still used as an important tool for forest fire 
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monitoring, for example, Ba et al. used MODIS images for scene classification to detect early forest 
fires (Ba et al., 2019). 

With the launch of more remote sensing satellites and sensors, satellites and sensors for mon-
itoring forest fires tend to be diversified. In 2008, Giglio et al. used data from the ASTER sensor, 
carried on the Terra satellite, to detect the forest fire radiative power (FRP) to measure the forest 
fire intensity (Giglio et al., 2008). In 2011, He et al. combined data from the same temporal phase 
of ASTER and MODIS for forest fire detection to eliminate the effects of solar contamination and 
thermal-path-radiance, improving the accuracy of forest fire detection, but with a higher rate of 
detecting errors in deforested areas (He & Li, 2011). European ATSR sensor, onboard ERS satel-
lites, provides multi-angle, near real-time thermal infrared measurement information for forest fire 
monitoring (Arino et al., 2012). In 2012, Arino et al. analyzed the time series of night fires provided 
by ATSR and verified that the ATSR data correlated well with MODIS data (Arino et al., 2012). 
As the Sea and Land Surface Temperature Instrument (SLSTR) sensor on the Sentinel-3 has similar 
characteristics to the ATSR and has a wider scanning area, Arino et al. proposed the use of the 
SLSTR as the supplement to the night fire information collected from ATSR and MODIS to address 
information saturation during the day (Arino et al., 2012). In 2012, Wooster et al. developed and 
tested a theoretical forest fire detection algorithm for SLSTR using MODIS and ASTER data and 
confirmed its high detection accuracy for small or low-temperature forest fires (Wooster et al., 
2012). However, this experiment lacked validation using real SLSTR images. With the launch of 
the Sentinel-3 satellite with the SLSTR sensor in 2014, Xu et al. collected real images from SLSTR 
in 2020 to complement and update previous forest fire monitoring data and compared them with 
fire products from MODIS and VIIRS (Xu et al., 2020). Furthermore, in 2021, they confirmed that 
the F1 Band of SLSTR is of great application for forest fire detection (Xu et al., 2021). And they 
predicted that data from Sentinel-3/SLSTR could become the main source for midday and night 
forest fire detection in the future. 

In 2011, the first VIIRS sensor was successfully launched on board the SNPP satellite, carry-
ing two sets of independent multispectral Bands and providing images of global coverage. In 2014, 
Schroeder et al. developed a fire detection algorithm using VIIRS, which has superior mapping 
capabilities to MODIS (Schroeder et al., 2014). In 2017, Zhang et al. jointly used I-band at a spatial 
resolution of 375 m and M-band of 750 m from VIIRS to detect fire and its radiated power (FRP) 
for the first time, and were able to effectively detect small fires (Zhang et al., 2017). The Chinese 
GF-4 satellite has high temporal resolution and moderate spatial resolution, making it suitable for 
high-frequency forest fire monitoring. In 2021, Zhou et al. discovered that the Infrared Spectrum 
(IRS) sensor carried by the GF-4 has a band that is sensitive to forest fires. And they used this band 
for spatial alignment with MODIS and carried out forest fire monitoring experiments at Qinghai 
Lake and Siling Lake, obtaining a high degree of radiometric calibration agreement (Zhou et al., 
2021). In 2022, Zhang et al. used data from the Panchromatic and Multispectral (PMS) sensor and 
IRS sensor carried by GF-4 to eliminate high-temperature anomalies when forest fires were not 
occurring, and used MODIS data to verify feasibility (Zhang et al., 2022). During this period, 
greater progress was made in forest fire monitoring using new satellites and sensors. 

To achieve real-time monitoring of forest fires and improve the accuracy, scholars at home 
and abroad have devoted to research on multi-source satellite remote sensing monitoring for forest 
fires. In 2022, Tian et al. considered that remote sensing data from a single source could not meet 
the needs of forest fire monitoring, thus they combined Planet, Sentinel-2, MODIS, GF-1, GF-4 
and Landsat-8 satellites to validate forest fires that occurred in March 2020 in Liangshan Yi Au-
tonomous Prefecture, Sichuan Province, and the monitoring efficiency was significantly improved 
(Tian et al., 2022). In 2023, Yin et al. used GF-6 Wide Field of View (WFV) data and FY-3D 
Medium-Resolution Spectral Imager (MERSI) data to effectively identify forest fires in Anning, 
Yunnan Province, on 9 May 2020 (Yin et al., 2023). 

3. Forest Fire Monitoring Methods with Satellite Remote Sensing 
Nowadays, many countries have established satellite remote sensing systems for forest fire 

monitoring (He et al., 2022), and scholars have developed and improved a variety of forest fire 
monitoring algorithms for different remote sensing satellites. Forest fire monitoring algorithms can 
be mainly classified into Brightness Temperature detection-based forest fire monitoring methods 
and forest fire smoke detection-based forest fire monitoring methods. 

3.1. Forest Fire Monitoring Methods Based on Brightness Temperature 
The most common and basic method used in research on forest fire monitoring with satellite 

remote sensing technology is Brightness Temperature (BT) detection method. This method uses 
BT differences between forest fires and other categories of land cover in the Middle Infrared (MIR) 
and Thermal Infrared (TIR) channels of remote sensing imagery to construct forest fire detection 
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algorithms, and then combines the reflective properties of the visible or Near-infrared (NIR) chan-
nels to exclude spurious detections of forest fires. 
3.1.1. Brightness Temperature Detection Based on Bi-spectral Method 

Remote sensing infrared is highly sensitive to thermal radiation (Li & Jia, 2018). Forest fires 
occur at high temperatures, therefore the use of remote sensing infrared to discriminate the BT 
anomaly of land covers can be effective in detecting forest fires.  

In 1981, Dozier (1981) proposed the bi-spectral detection method to calculate the temperature 
and area of sub-pixel fire points using MIR and TIR data from AVHRR, paying the way for forest 
fire monitoring using remote sensing infrared data. However, this method is premised on the as-
sumption that there are only two temperature fields, the flame and the background, and both tem-
perature fields have the same temperature (Dozier, 1981). This assumption is usually unrealistic 
and limits the applicability of the method. On this basis, scholars have made further improvements 
to the bi-spectral detection method. In 1990, Kaufman et al. (1990) improved the bi-spectral method 
by using AVHRR data to deal with the problem of high environmental impact during forest fire 
detection in the daytime. In 2006, Zhukov et al. ( 2006) used Dozier’s bi-spectral method to sum-
marize and analyze the mission experience of the bi-spectral infrared detection (BIRD) experi-
mental small satellite and confirmed that it is more reasonable to quantitatively evaluate forest fires 
in terms of FRP than the effective fire temperature or the effective fire area. In 2008, Eckmann et 
al. (2008) proposed the multiple endmember spectral mixture analysis (MESMA) based on the bi-
spectral method to address the uncertainties in the detection of fire size and temperature using 
MODIS et al. They estimated the size and temperature of each fire sub-pixel by pre-generating a 
library of fire end-members and background end-members at different temperatures to decompose 
the fire pixels (Eckmann et al., 2008). In 2013, Peterson et al. (2013) used MIR and TIR data from 
MODIS to develop a sub-pixel-based FRP algorithm, which incorporated a radiative transfer model 
to eliminate solar effects and was applied to monitoring large forest fires in California, bridging the 
gap of earlier studies (Dozier, 1981) where the algorithm effect could not be verified due to the 
lack of real data. Given the rapid replacement of satellites and sensors, this algorithm was designed 
to be suitable for other sensors with similar spectral properties (Peterson et al., 2013). In 2014, 
Giglio and Schroeder (2014) proposed a rejection test before using the bi-spectral method. They 
filtered detection errors caused by background interference on the basis of prior knowledge and 
performed a feasibility assessment using MODIS data over 10 years (Giglio & Schroeder, 2014) to 
further improve the application of the bi-spectral method in forest fire detection. 
3.1.2. Brightness Temperature Detection Based on Threshold Method 

The threshold method is based on the analysis and study of prior knowledge of an area or 
season to select the threshold for fire point identification. When the BT of one or more spectral 
channels exceeds the pre-selected threshold, it is considered to be the fire point pixel. The threshold 
methods used for forest fire monitoring can be divided into single-channel threshold (SCT) method 
and multi-channel threshold (MCT) method. 

The SCT method relies only on the BT value 4 T  in the MIR channel. If the BT value 4 T  
of a pixel is greater than the pre-selected threshold, this pixel is defined as having the fire point. In 
1991, Setzer and Pereira (1991) carried out a study of forest fire detection in tropical forests, using 
a digital non-supervised clustering algorithm to set pixels in Band 3 of AVHRR with the radio-
metric temperature above 460°C as fire points. As AVHRR lacks a dedicated channel designed for 
fire detection, scholars attempted to migrate SCT to other sensors and demonstrated its feasibility, 
for example, Arino and Rosaz (Arino et al., 1999) applied SCT to ATSR for forest fire detection. 
SCT is better suited to areas with low temperatures or low solar reflection (Hua & Shao, 2017). 
And it is more effective in detecting forest fires at night, but during the day there are more detection 
errors due to the influence of solar reflection caused by surface bright objects. 

To solve the problems of SCT, MCT is pre-processed by eliminating clouds, compensating 
for solar radiation generated by ground reflections et al. to improve the effectiveness of MIR and 
then rules out spurious forest fires by comparing the BT difference in channels between MIR and 
TIR (Li et al., 2001). In 1990, Kaufman et al. (1990) demonstrated that if in a pixel, the channel 3 
(MIR) temperature 3T  and the channel 4 (TIR) temperature 4T  acquired from AVHRR simulta-
neously satisfy the following criteria, fires are defined in this pixel. 

𝑇𝑇3 ≥ 316𝐾𝐾,  𝑇𝑇3 ≥ 𝑇𝑇4 + 10𝐾𝐾,  𝑇𝑇4 > 250𝐾𝐾 (1) 

In Equations (1), 3 T  represents the MIR temperature value, 4 T  represents the TIR temper-

ature value, and  K  represents the unit of temperature. 
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In 1994, Kennedy et al. (1994) upgraded the forest fire monitoring system in West Africa, 
based on Kaufman’s study (Kaufman et al., 1990), by optimizing the threshold value for channels 
3 and 4 and increasing the difference between 3T  and 4T  to further eliminate spurious forest fires. 
In 2004, Pu et al. (2004) used a series of threshold tests to eliminate spurious fire alarms caused by 
warm backgrounds (e.g. bare ground), highly reflective clouds, and surface bright objects. 

The threshold method is highly territorial and is only applicable to local areas, which is diffi-
cult to cope with forest fire monitoring in different geographical areas or different seasons. There-
fore, scholars need to select appropriate thresholds according to characteristics of different areas. 
For example, in 2004, Li et al. (2000) developed a forest fire monitoring threshold method for the 
unique environment of northern Canada, which discriminated all potential forest fire pixels while 
removing spurious forest fire pixels. This algorithm can detect most real forest fires without thick 
cloud interference, laying the foundation for local forest fire satellite monitoring systems. In re-
sponse to the problem of poor adaptability of fixed-threshold methods, scholars have investigated 
forest fire monitoring algorithms with adaptive thresholds (He & Liu, 2008; Liu et al., 2020). How-
ever, the missed detection rate of forest fires was high. 
3.1.3. Brightness Temperature Detection Based on Contextual Method 

The threshold method uses multi-spectral information to detect forest fires step by step for 
individual pixels without taking into account the effect of surrounding pixels, i.e. the environmental 
background changes, on forest fire detection. 

To solve this problem, in 1990, Lee and Tag (1990) proposed a contextual method, based on 
MCT, extending to spatial information. They set up a 3x3 pixel matrix centered on the target pixel, 
calculated the background temperature according to surrounding pixels, and compare it with the 
mean BT value within the matrix to discriminate the presence of fires in the target pixel (Lee & 
Tag, 1990). This method can be flexibly and effectively applied to scenes where the surface tem-
perature varies considerably. In 1996, Flasse and Ceccato (1996) proposed a fire detection contex-
tual algorithm. They used the threshold method to detect potential fires using AVHRR data, ana-
lyzed the neighboring pixel background, and then compared the potential fires and their back-
grounds by the BT properties of background pixels to confirm the real fires (Flasse & Ceccato, 
1996). This method was tested in tropical rainforests and proved to be suitable for detecting forest 
fires in different areas at different times. However, a limitation revealed by this study is that in 
1999, Nakayama et al. (1999) found that when this method was applied to large burning areas of 
fire, the central point was wrongly detected as a non-fire point. In 2007, Li et al. (2007) proposed 
an enhanced contextual algorithm for detection of forest fire (ECFDA), which improved the neigh-
boring pixels confirmation algorithm of potential fires by optimizing the size of the background 
matrix, and improved the criteria selection algorithm for real fires by introducing the concept of 
BT gradient. The ECFDA is sensitive to the detection of small-scale fires, but cannot be applied to 
large-scale forest fires. 

MODIS has dedicated fire detection channels and is used more often in forest fire monitoring 
studies. In 2003, Giglio et al. (2003) proposed an improved contextual fire detection algorithm for 
MODIS, known as version 4, which provides considerable improvement over previous versions. 
The version 4, improving the detecting sensitivity to small fires and cold fires, classified pixels 
examined by MODIS as one of the following classes: missing data, cloud, water, non-fire, fire, or 
unknown (Giglio et al., 2003). In 2008, Schroeder et al. (2008) tested the performance of the 
MODIS fire product using ASTER and ETM+ images in Brazilian Amazonia by quantifying com-
mission and omission error and improved contextual detection algorithms using BT profiles to re-
duce the commission error rate in tropical forests. To exclude the detection errors caused by small 
forest bare areas, smoke obscuration, etc. and to reduce the commission error rate of fire detection 
(Wang et al., 2009; Wang et al., 2007), in 2016, Giglio et al. (2016) improved the detecting algo-
rithm using collection 6 MODIS data by introducing the forest clearing rejection test. 

However, in 2006, Zhou and Wang (Zhou & Wang, 2006) demonstrated that the theoretical 
algorithm for forest fire detection using MODIS data, when applied to Chinese forests, misidenti-
fied non-forest fire areas with image noise interference as forest fires. Therefore, they used the 
contextual method to analyze fire points and their neighboring pixels of nine forest fire events in 
China, and improved the noise point filtering criteria to effectively eliminate the noise interference 
points (Zhou & Wang, 2006). 

As the performance of satellites and sensors continues to improve, scholars have attempted to 
address problems of MODIS in forest fire detection using newer satellites and sensors. In 2014, 
Schroeder et al. (2014) proposed an improved contextual method based on VIIRS to eliminate spu-
rious fire identification caused by daytime water bodies, sun glints, bright objects, etc. In 2017, Lin 
et al. (2017) proposed the use of infrared channel slope to analyze the difference between TIR and 
MIR information collected from FY-3/VIRR and combined the contextual fire detection method 
and dynamic threshold fire detection method for selecting fire pixels. This method could better suit 
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the global environment for fire detection. In 2020, Yin et al. (2020), based on the FY-3/MERSI 
data, improved the dynamic threshold method and the contextual method for forest fire detection, 
by setting the threshold criteria for the BT value in the MIR, which achieved the fast and effective 
detection of both large and small-scale fires. The contextual method detects forest fires based on 
the difference between the target and the background within the adaptive window. It expands the 
application range of algorithms and improves the accuracy of forest fire detection, but the applica-
tion flexibility is limited by regional differences in monitoring. 
3.1.4. Brightness Temperature Detection Based on Deep Learning Method 

In recent years, scholars have paid increasing attention to the application of Deep Learning 
methods in various fields, including the field of forest fire monitoring, and have made great pro-
gress. The more commonly employed methods include Neural Networks (NN), Decision Tree and 
its ensemble learning algorithms, and Support Vector Machine (SVM), etc. In 2000, Arrue et al. 
(2000) constructed the “False Alarm Reduction System” for forest fire monitoring using Back Prop-
agation (BP) NN, Radial Basis Function Network, and Dynamic Learning Vector Quantizer to cal-
culate the probability values of forest fires using satellite infrared images. In 2009, Maeda et al. 
(2009) used the BP algorithm to train artificial neural networks (ANN) of different structures to 
detect forest fires in high-danger areas of the Brazilian Amazon using MODIS imagery, achieving 
90% accuracy. This algorithm allowed for fast training of samples while maintaining detection 
accuracy for forest fires (Abid, 2021). 

The BT detection method for forest fires is mainly implemented by satellites and sensors with 
TIR channels, such as MODIS, AVHRR, FY series, etc., but it is not suitable for satellites and 
sensors with only a single MIR channel for forest fire detection. 

3.2. Forest Fire Monitoring Methods Based on Forest Smoke Detection 
In the early stage of forest fires, the low temperatures from combustion make it difficult for 

satellites to receive sufficient infrared radiation for imaging. However, insufficient burning of com-
bustible materials produces large amounts of smoke, and detection of forest fire smoke by satellite 
can lead to earlier detection of forest fires. Currently, there are fewer domestic and international 
studies on smoke detection using satellites to detect forest fires. 
3.2.1. Forest Smoke Detection Based on Visual Identification Method 

The visual identification method is the early forest fire smoke detection method. It uses com-
puters to generate true-color or false-color images of forest fire smoke to visualize the shape and 
scale of forest fire smoke (Chung & Le, 1984; Ferrare et al., 1990), and then manually interprets 
the area and diffusion direction of the forest fire smoke. The visual identification method is intuitive 
and convenient, but it relies on artificial operation, which is not conducive to the automatic pro-
cessing of forest fire smoke information, and the accuracy of smoke identification is low. To im-
prove the accuracy of smoke detection and reduce the subjective dependence of the visual identifi-
cation method, scholars have used infrared information in combination with the threshold method 
for forest fire smoke detection. 
3.2.2. Forest Smoke Detection Based on MCT Method 

MCT detects smoke pixels by utilizing the rich land cover information in remote sensing im-
ages, setting criteria based on characteristics of land covers such as clouds, water bodies, vegetation, 
etc., combining the spectral features of multiple infrared channels (Xie et al., 2007), and excluding 
non-smoke pixels by different thresholds. 

In 2007, Chrysoulakis et al. (2007) identified the center of forest fire smoke, based on multi-
temporal and multi-spectral features of remote sensing imagery, by comparing the anomalous pix-
els in the NIR channel and combining them with the Normalized Difference Vegetation Index 
(NDVI) index, and then used spectral and spatial filters to spatially extend the center to the entire 
area covered by the forest fire smoke plume. The proposed algorithm provided accurate estimates 
of the spatial characteristics of the forest fire smoke plume (Chrysoulakis et al., 2007). To improve 
the sensitivity of detecting small fires and low-temperature fires, in 2007, Wang et al. (2007) iden-
tified smoke pixels using the smoke mask technique based on information from the TIR channel 
and solar reflectance channel, and used the contextual method to detect missed forest fire events 
accompanied by significant smoke plumes. In addition, in 2008, Peng et al. (2008) set a forest fire 
smoke discrimination threshold based on the characteristics of tropical rainforests, and improved 
forest fire monitoring algorithm based on version 4 MODIS data by using the adaptive window 
adjustment technique of the smoke plume mask. This algorithm improved sensitivity to detection 
of small forest fires at low-temperature forest fires, especially fires with large scan angles (Peng et 
al., 2008). 

However, smoke has no fixed spectral characteristics and shows similar features to clouds, 
dust and haze on the satellite spectral bands, thus making it difficult to distinguish them, resulting 
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in the MCT method not being able to effectively employ smoke detection for early warning of 
forest fires. 
3.2.3. Forest Smoke Detection Based on Deep Learning  

With the continuous launch of satellites, real-time access to remote sensing data has become 
a reality, and there is an urgent need to develop more effective and intelligent algorithms for the 
automated detection of forest fire smoke based on massive remote sensing data. In 2014, Li et al. 
(2014) separated smoke from other land cover types in satellite imagery and developed a smoke 
identification algorithm combining Fisher linear Discrimination and K-means clustering, which 
was validated using forest fire events in Greater Khingan Mountains (China), Amur Region (Rus-
sia), Australia and Canada, confirming that the algorithm could capture both heavy and dispersed 
forest fire smoke. In 2015, Li et al. (2015) trained and debugged the BPNN with samples acquired 
from MODIS data of three forest fire events occurring in China, Northeast Asia, and Russia, and 
verified that the algorithm was effective in capturing thick and thin smoke over land. In 2020, Qin 
et al. (2020) constructed a Decision Tree Identification model for forest fire smoke based on the 
reflectance of forest fire smoke in the visible and NIR channels of GF-1 and GF-2 satellite imagery. 
In 2023, Li et al. (2023) improved the subpixel mapping method based on the Random Forest model 
for identifying and locating forest fire smoke. 

Scholars have further improved deep learning algorithms to address problems that have arisen 
in forest fire smoke detection research. The uneven spatial distribution of smoke and the complexity 
of its background result in smoke being difficult to detect due to its inconspicuous features in sat-
ellite imagery. To distinguish forest fire smoke from the background scene, in 2019, Ba et al. (2019) 
optimized the CNN, which improved the recognition accuracy of CNN for forest fire smoke based 
on remote sensing imagery, by introducing spatial and channel-wise attention mechanisms, and 
sorting out the spatial characteristic information of remote sensing images collected from medium- 
and high-resolution satellites. The acquisition of remote sensing image data containing forest fire 
smoke is limited by the constraints of satellite lifetime in orbit, geographical coverage, etc., which 
makes it difficult to collect a sufficiently large-scale dataset of forest fire smoke (Zheng et al., 2023). 
In 2018, ZHANG et al. (2018) performed forest fire smoke detection experiments based on the 
Faster R-CNN model, inserting real and simulated smoke into forest images to generate synthetic 
forest fire smoke samples. The results demonstrated that the method solves the problem of insuffi-
cient data while eliminating the need for sample labeling. In 2023, Sathishkumar et al. (2023) se-
lected the Xception model as the optimal model, and fine-tuned it using the Learning Without For-
getting (LwF) algorithm to suit the new task. As a result, they investigated Transfer Learning of 
pre-trained models for forest fire smoke monitoring, which increased the data amount and de-
creased the long training time (Sathishkumar et al., 2023). In 2023, Zheng et al. (2023) used 
Himawari-8 satellite remote sensing images to construct a small-scale dataset and proposed a forest 
fire smoke detection model (SR-Net) combining CNN and Lightweight Vision Transformer (Light-
weight ViT). The model employed CNN for inductive bias and the Global Attention Mechanism 
of Lightweight ViT to generate a lightweight forest fire smoke detection model with higher accu-
racy while consuming fewer training resources (Zheng et al., 2023). 

4. Discussion and Conclusion 
This study statistics and analyses research on satellite remote sensing for forest fire monitor-

ing in recent decades based on bibliometric analysis, using the co-occurrence frequency of textual 
data located in titles, abstracts and keywords. We extracted data from the Web of Science search 
tool which contains a full range of papers. The input qualifiers were “remote sensing” and “forest 
fire monitoring”, and a total of 999 papers were retrieved (the data obtained up to 20 July 2023). 
We then used VOSviewer software to visually represent extracted data from 999 papers (Figure 1). 
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Figure 1. Data visualization based on keywords collected from Web of Science. 

The results of the data network visualization show that satellites used more in forest fire sat-
ellite monitoring studies are Landsat, MODIS, Sentinel, etc., which all have obvious advantages 
and limitations in forest fire detection. Landsat provides detailed information on the spatial distri-
bution of fires, but has a long revisit period (every 16 days) and a small geographical coverage area. 
MODIS has channels and products specifically designed for fires, with a resolution of the highest 
250m and high detection accuracy, but the temporal resolution is not high enough to detect fires in 
time and then alarm it. Moreover, the methodology for satellite monitoring of forest fires shown in 
Figure 2 involves more terms such as “machine learning”, “time series” and “spectral indices”. It 
indicates that the research hotspots in forest fire monitoring focus on the introduction and develop-
ment of Deep Learning in forest fire monitoring (machine learning), the improvement of the tem-
poral efficiency of medium- and high-spatial-resolution satellites and sensors (time series), the im-
provement of monitoring algorithms for forest fires using the information of infrared channels 
(spectral indexes), and so on. 

 
Figure 2. Publication numbers of research on satellite monitoring for forest fires in the Web of Science Core 
Collection database from 2009 to 2023. (The data obtained up to 20 July 2023.) 

As the systems of satellites, sensors and forest fire monitoring technology, such as time series 
techniques to process data, deep learning methods, etc. (Santos et al., 2021), advance by leaps and 
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bounds, and the free remote sensing imagery springing up, the attention to satellite remote sensing 
monitoring of forest fires has gained a strong momentum. From the data provided by Web of Sci-
ence, it can be seen that 2018 to 2023 (the data obtained up to 20 July 2023) are the most repre-
sentative five years for domestic and international research on forest fire satellite remote sensing 
monitoring. Over these five years, satellite remote sensing monitoring algorithms for forest fires 
have become increasingly mature, but the current algorithms still have their own advantages and 
disadvantages, as shown in Table 2. 

Table 2. Advantages and disadvantages of satellite remote sensing monitoring algorithms for forest fires. 

Algorithms Advantages Disadvantages 

Bi-spectral Method Laying the theoretical foundations. Based on unrealistic assumptions and lack of vali-
dation by actual data. 

SCT Method Simple technology. Large daytime error. 

MCT Method High stability. Not adapted to diverse environmental back-
grounds. 

Contextual Method Highly adaptable to the environment. High rate of missed and wrong judgements for 
small fires and low-temperature fires. 

Deep Learning Method Highly automated. Relatively complex methods and techniques. 

The review of literature revealed the following characteristics of satellite remote sensing mon-
itoring of forest fires: 

(1) Satellite remote sensing monitoring of forest fires is strongly influenced by the temporal 
and spatial resolution of satellites and sensors. It is difficult for current satellites and sensors to 
simultaneously fulfill the requirements of high temporal resolution and high spatial resolution for 
forest fire monitoring. Geostationary Meteorological Satellites have high temporal resolution but 
low spatial resolution, while Polar Orbit Meteorological Satellites have low temporal resolution but 
higher spatial resolution. Therefore, scholars at home and abroad have improved various algorithms 
for satellite remote sensing monitoring for forest fires, and are dedicated to making up for short-
comings of forest fire monitoring in time and space. For example, Himawari-8 can acquire surface 
information every 10 minutes, which is suitable for real-time monitoring of forest fires (Zhang et 
al., 2023), but suffers from the problem of low spatial resolution of pixels and large differences in 
the information contained in pixels. Therefore, Himawari-8 is more suitable to use deep learning 
algorithms for forest fire monitoring (Kang et al., 2022). On the contrary, MODIS has low temporal 
resolution and cannot rapidly detect forest fires, but it has high spatial resolution and can more 
accurately detect forest fires (Feng & Zhou, 2023). 

Cloud masking impacts the effectiveness of forest fire monitoring. Current cloud identifica-
tion algorithms have evolved to automatically and intelligently identify clouds using machine learn-
ing algorithms (Bing et al., 2023), but there are fewer studies applying them to data preprocessing 
for forest fire monitoring. Cloud masking can increase the satellite’s reflectance in the visible band 
and decrease the BT value in the infrared band (Xie et al., 2018). Current cloud identification al-
gorithms in forest fire monitoring mainly use the threshold method (Xu & Zhong, 2017), but the 
method is greatly affected by different time points and environments. Cloud identification using 
machine learning algorithms is more flexible than the threshold method, which has a simpler struc-
ture and higher accuracy, however, it requires manual extraction of training samples from different 
scenes (Tsagkatakis et al., 2019), and it is difficult for a single satellite or sensor to meet the number 
requirement of training samples. 

Satellite monitoring algorithms for forest fire work to improve the sensitivity of monitoring 
small fires and fires with low bright temperatures. Due to the small burning area, insufficient com-
bustion, low flame temperature and other features at the early stage of forest fires, and canopy 
shading, it leads to missed judgment and false judgment when using satellites and sensors to detect 
small fires or low-temperature fires. 

Given the above characteristics, the future development trends of satellite remote sensing 
monitoring for forest fires are as follows: 

(1) Using multi-source satellites and sensors to improve the spatial and temporal efficiency of 
forest fire monitoring. For instance, the combination of GF-6 WFV and FY-3 MERSI enables 
multi-aspect capture of forest fire information (Yin et al., 2023). The spatial resolution of GF-6 
WFV data is 16m, the radiometric resolution is 12bit, its coverage is wide, and its imaging quality 
is high. FY-3 MERSI’s monitoring scope is broad, observation frequency is dense, and it is sensi-
tive to high-temperature heat reservoirs on the ground (Zheng et al., 2013). In addition, recent years 
have witnessed a spurt of progress in satellites and sensors. Research could incorporate an increas-
ing number of advanced satellites for forest fire monitoring, such as China’s HJ-1A and 1B satel-
lites which can provide data up to 30m resolution (Sun et al., 2010), and South Korea’s GK2A 
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satellite carrying an AMI sensor, which can provide a spatial resolution of up to 500m in the visible 
band, has a comparatively higher radiometric and spectral resolution, and has improved imaging 
time up to 10 minutes (Chen et al., 2022). 

(2) Migrating and improving deep learning-based cloud detection algorithms to make them 
suitable for data preprocessing of forest fire monitoring. Deep learning captures more comprehen-
sive and deeper features of cloud on remote sensing imagery, which can also be improved to be 
trained with small sample datasets (Zheng et al., 2023). Among the deep learning algorithms, CNN 
can classify and detect clouds with high accuracy (Segal-Rozenhaimer et al., 2020; Yu et al., 2020). 
U-Net can identify thin clouds, broken pieces of clouds (Segal-Rozenhaimer et al., 2020; Yu et al., 
2020) and clouds in snow and ice regions (Jeppesen et al., 2019), distinguish between clouds and 
their shadows, and capture cloud boundaries (Bing et al., 2023). And BP NN are suitable for remote 
sensing imagery data containing complex underlying surfaces (Gao et al., 2018). However, the 
training time for cloud recognition using deep learning models is long and the model structure is 
complex, so they need to be migrated and improved to increase the computational efficiency when 
they are applied to forest fire monitoring. 

(3) Increasing the accuracy of spatial positioning for satellite remote sensing monitoring of 
forest fires. Remote sensing imagery contains abundant feature types, but the spatial resolution of 
the highly temporal satellite data used in forest fire monitoring is low. The use of hybrid pixel 
decomposition combined with sub-pixel localization methods can effectively improve the spatial 
positioning accuracy during forest fire monitoring (Xu et al., 2022). There have been studies ap-
plying sub-pixel localization methods to other areas (Ling et al., 2010), but fewer use it in satellite 
remote sensing monitoring of forest fires. 
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Abstract: This research article aims to establish a relationship between regional conditions of agri-food 
production and their correlations with macroeconomic structures. To this end, soybeans production in Rio 
Grande do Sul, Brazil, and its trade with Chinese Mainland are observed. The analysis draws on the Food 
Regimes approach in dialogue with institutionalist theory, especially considering the construction of 
agricultural production habits and models. The argument takes secondary quantitative data on soybeans 
production and trade, triangulating them with information gathered from international platforms—primarily 
FAOSTAT and Trase Platform—and with qualitative data collected during field research—using landscape 
analysis and interviews conducted with soybean cooperatives (in the Brazilian case). Findings on the formation 
of the soybean market between Rio Grande do Sul and Chinese Mainland reveal historically constituted 
elements that shaped trade flows as they are configured contemporarily. A correlation between the Third Food 
Regime and effects on agricultural practice in the Brazilian region was also observed.  

Keywords: markets; soybean; Chinese Mainland; commodities; agrifood system; food chains 

1. Introduction
Approximately 238 million tons of soybeans were produced in Rio Grande do Sul, Brazil, 

between 2000 and 2020, most of which were destined for export. The grains traveled along 
highways, railways and waterways towards the main port in the region. A significant part of its 
shipment was destined for the Asian continent, specifically for Chinese ports. Such logistics 
involved individuals, corporations and States throughout its stages—processes made possible by a 
historical framework of practices that underpin contemporary operations. 

 The pointed historical framework is characterized by a global economy in which public and 
private actors possess different capacities of socioeconomic power, depending on the path of 
relations established over the decades. Since the founding of the People's Republic of China, 
especially since the launch of reform and opening up, this relation was developed through bridges 
connecting an internal development project to the international capitalist economy. In the rural area, 
these bridges are highly illustrated by the soy-meat chain (Escher, 2022). Through the import of 
oilseed, China established contact with international private actors, becoming the country with the 
largest quantity of imports since 2004. Meanwhile, it provided raw materials to stimulate its 
internal production of animal protein, mostly pork (Lander et al., 2020). On the other hand, the 
relation established between Rio Grande do Sul and the international market economy was marked 
by a dependence of the region (and the Brazilian country as a whole) on the capital stock obtained 
through the export of commodities (Oliveira, 2016; Wesz Junior, 2014). In the field, however, 
distinct types of agriculture were developed by producers according to their land and capital 
availability, generating institutions in dialogue with the pre-existing social bases. Given the 
intricate nature of this subject, our research delves into the formation of the soybean market 
between Rio Grande do Sul and China spanning from 1970 to 2020. The crux of our investigation 
lies in examining the role of influential actors in shaping this market dynamic. Specifically, we 
place a spotlight on the institutions that were either established anew or underwent transformation, 
instrumental in enabling the facilitation of these substantial commodity flows. 
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 To this end, our objective here divides into three questions: How does soybean export supply 
originate and is organized by the state of Rio Grande do Sul? How does China’s soybean demand 
in the international market originate and is organized? What elements permeate trade flows between 
both regions? 

 To settle down the scope, three choices require justifications: the markets, the geographical 
area and the time frame. The first one regards interpretation of “the market” as an outcome of 
human sociability. General reflections on varieties of capitalism and economic forms add to the 
debate in Political Economy and to development perspectives, by regarding the various elements 
that comprise socioeconomic relations. In this research market analysis aims to contribute to the 
aforementioned debate by observing a transnational commodity chain (Azevedo, 2016; Wesz 
Junior, 2014). The second delimitation regards the geographical focus on China and Rio Grande do 
Sul. China was chosen because of its significance in oilseeds worldwide imports in the 21st century, 
its geopolitical potential and its adopted path of development (Escher, 2016; Jabbour, 2010; 
Schneider, 2011; Zhang & Zeng, 2021). Rio Grande do Sul, on the other hand, presents an 
economic path linked to soybean, as well as significant social connections in its structure currently 
(Benetti, 2004; Escher & Wilkinson, 2019). It should be noted that the focus on a Brazilian state 
rather than the country stems from the possibility of greater depth by avoiding generalizations that 
would be required in the analysis of the whole national scenario. The selection of these two regions 
is also due to the possibility of making a comparative analysis between institutional frameworks 
and their effects on the socioeconomic development of localities. Finally, the adopted time frame 
(1970 to 2020) is justified by the dynamism of sociopolitical movements in the period in both 
territories, which led to local agricultural transformations (Chen, 2019; Delgado, 2013).  

 Two theoretical pillars underpin the elaboration of this article. The first one, aligned with a 
global and regulative approach, namely the Food Regimes, suggests that the formation of 
macroeconomic structures defines the position of countries in international trade (Bernstein, 2016; 
Friedmann, 2005; McMichael, 2009). A second pillar is related to the cultural and cognitive 
dimensions. We draw on scholars of Historical and Sociological Institutionalism stream because, 
despite regulative global compositions, everyday practices are performed by actors in contexts that 
are demarcated by formal and informal factors (Beckert, 2017; Hodgson, 2006). The institutionalist 
approach also underpins our interpretation of markets, taking them as social elements (Azevedo, 
2016). To connect these spheres, we draw especially on the perspective of embeddedness regarding 
structural and local dimensions (Cassol & Schneider, 2022; Dimaggio & Louch, 1998). 

 The analysis resorted to quantitative and qualitative data and combined theoretical and 
statistical processes to build macro and meso analytical perspectives of the researched theme. 
Quantitative data were retrieved from the National Waterway Transport Agency (ANTAQ); the 
National Bureau of Statistics of China (NBSC); the Municipal Agricultural Production database—
Brazilian Institute of Geography and Statistics (PAM/IBGE); the Foreign Trade Statistics/Brazilian 
Ministry of Economy; the Brazilian National Supply Company (CONAB); the Brazilian 
Association of Vegetable Oils (ABIOVE); and the platform Trase.earth. As to qualitative data, the 
research drew on two practices: reading the landscape of the northeastern region of Rio Grande do 
Sul (RS) and conducting semi-structured interviews with representatives of cooperatives located in 
RS and engaged in the soybean market. 

 In response to the three aforementioned guiding questions, the research inferred a social, 
artificial and politically induced nature of the soybean market formed between Rio Grande do Sul 
and China. A feat accomplished by means of five factors: the dilution of production costs, in RS’ 
agricultural export model, throughout the social body; correlations between the Third Food 
Regime’s dynamics and the practice located in Rio Grande do Sul; the Chinese development model 
and its balance between domestic and foreign markets; China’s global expansion and the 
consequent changes in the international economy; and the distinct social relationships—such as 
trust and personal ties—that define the soy market. This research article makes a contribution by 
delving deeper into the analysis of market development and structuring. It engages in a critical 
discourse with paradigms that endorse conventional mainstream economic approaches that often 
ascribe a natural and self-regulating character to capitalist markets. Instead, this research aligns 
with perspectives advocating for social-based interpretation of economic relations. 

 In addition to this introduction, the article follows with three sections that address the research 
questions. The next section presents the production context in Rio Grande do Sul, the third one 
discusses the Chinese demand for grains and the fourth examines the commercial relationship 
between Rio Grande do Sul and China, while identifying observable elements related to the Food 
Regimes’ approach as well as institutional elements. Then, it presents final considerations. 

2. Supply of Soybeans by Rio Grande do Sul 
The first signs of soybean commercial cultivation in Rio Grande do Sul date back to the 1940s. 

From then on, the grain’s trajectory in the region can be outlined according to three periods: from 
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1950 to 1970; from 1970 to 1990; and from 1990 to 2020 (Wesz Junior, 2014; Delgado, 2013; Da 
Ros, 2006; Conçalves, 1984). 

 Between 1950 and 1970, soy gained ground in food consumption and in animal feeding 
(Conçalves, 1984). Complementarily with wheat crops, the oleaginous plant expanded 
territorially—especially fostered by local agricultural cooperatives. Its rapid expansion introduced 
new processes in the rural environment, such as greater mechanization and chemicalization of 
production (Da Ros, 2006). 

 Between the 1970s and the 1990s, soybean cultivation became predominant in the region as 
a result of four socioeconomic movements: changes in international supply due to reduction in the 
United States’ domestic production (Bertrand et al., 1987); increasing consumption of the grain by 
European countries for production of animal protein and vegetable oils (Singh & Shivakumar, 
2010); government subsidies for technological improvements related to the Green Revolution, 
which enabled soybean cultivation in new regions (Da Ros, 2006); and the rise in commodity prices 
that expanded the use of agricultural products as a capital inflow channel (Bertrand et al., 1987). 

 If the period 1970 to 1990 saw a significant expansion of soybean cultivation in Rio Grande 
do Sul, it was between 1990 and 2020 that its commercial importance became preponderant. At the 
beginning of the 21st century, economic destabilization in Asian countries caused international 
retraction of private credit. To maintain capital inflow, the Brazilian government fostered 
agricultural exports, with the addition of a new identify: agribusiness. In the Brazilian context, the 
term referred to the political project promoted and organized by agricultural conglomerates based 
on private capital and government support, especially fiscal incentives, export credits, 
infrastructure and the like (Oliveira 2016; Pereira & Alentejano, 2015). The sociopolitical 
construction was in tune with the enactment, in 1996, of the Kandir Law, which exempted primary 
products from the tax on products transacted, thus benefiting and encouraging the export of 
unprocessed raw materials. The law aimed to promote foreign trade to guarantee foreign currency 
inflow to the country’s economy (Lemos et al., 2017). This new tax policy replaced the previous 
one, which levied a 13% tax on non-processed grains transacted, 11% on bran and 8.5% on 
processed oils. Such elements, together with the liberalization of the national market, reinforced 
Brazil’s connection with the world economy (Benetti, 2004). 

As a consequence, indices registered by CONAB on soybean cultivated area in the state show 
a substantial change over the last five decades: from 3.49 million hectares in 1976/1977, to 2.97 
million in 2000/2001 and reaching 6.05 million hectares in 2020/2021. Regarding production, from 
5.6 million tons in 1976/1977, production reached 7.1 million in 2000/2001 (indicating increase in 
productivity) and 20.78 million in 2020/2021—a 271% growth. 

 As regards the mode of production, the use of fertilizers is an emerging element throughout 
the 1990s. According to ANTAQ records, trade flows in the two main port complexes of Rio 
Grande do Sul—Porto Alegre and Rio Grande—recorded for the years 1979/1980/1981 totaled, 
altogether, three million tons of imported fertilizers, which corresponds to 35.8% of total imports 
unloaded in the state. In the period 1999/2000/2001, 4.4 million tons were recorded—7.8% of the 
total. In the recent period (2018/2019/2020), 15.28 million tons of imported fertilizers were 
recorded, reaching 40.7% of total imports. 

 This greater inflow of fertilizers points to the consolidation of a farming system based on 
external inputs, which becomes dependent on markets to make its production cycle viable (Van der 
Ploeg, 2018). Such trend occurs concomitantly with the opening of Brazilian national market and 
privatization of state-owned companies in the sector—especially phosphorus- and potassium-based 
fertilizers (Benetti, 2004)—corroborating the assertion by McMichael (2009, 2016) that the 
neoliberal discourse on removal of protections to domestic industries in favor of foreign 
competition has deepened in the Third Food Regime. In the long term, this process led to the 
concentration, in 2014, of 86% of Brazilian nitrogen-, phosphorus- and potassium-based fertilizers 
market in five companies (Bunge, Fertipar, Mosaic, Yara, Heringer) and, for pesticides and seeds, 
in eight companies that dominate 75% of the market (Syngenta, Bayer, Basf, Monsanto, Dupont, 
Dow, Makhteshim & FMC) (Wesz Junior, 2014). 

The case of authorized cultivars for seed production in RS is also illustrative. According to 
the National Registry of Cultivars (RNC/MAPA), thirteen authorized companies account for 127 
registered cultivars. However, all of them have a genetic load associated to three patent 
registrations—A5547-127, MON87701 x MON89788, GTS-40-3-2—which are linked to the 
Bayer CropScience / Monsanto Company complex.  Therefore, the 127 transgenic cultivars 
available for cultivation in the state must pay royalties to a company that centralizes ownership of 
the registered biological material. Such patents began to be regulated in Brazil in 1996, in the wake 
of international negotiations involving registration of private intellectual property conducted by the 
World Trade Organization (WTO) (Pereira & Alentejano, 2015). This points to a correlation 
between macroeconomy and the daily practice of actors, since access to seeds in Rio Grande do 
Sul is limited by commercial conditions defined by international organizations. 
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 In the stages that follow cultivation, the reconfiguration of soybean processing and refining 
units in Rio Grande do Sul stands out. ABIOVE data point to an 80% reduction in the number of 
active soybean oil refining manufacturers between 2002 and 2020, resulting in a 41% decrease in 
refining capacity in RS in two decades. Such fact relates to the promotion of exports of unprocessed 
grains, which leads to less value-adding activities in the region (Lemos et al., 2017). 

 As regards the spatiality of cultivation, in 1975 soybean crops were preponderant in the 
Northwest region of the state, with relative expansion towards Southwest—regions where wheat 
predominated earlier (Conçalves, 1984). A spatiality that changes massively in contemporary 
times—as shown in Figure 1, with significant expansion of the area destined to soybean. 

  
Figure 1. Distribution of soybean crops by municipality in Rio Grande do Sul, 2020. Source: Elaborated by 
the authors on QGIS using data from Produção Agrícola Municipal (PMA/IBGE). 

 All regions now have potential sites for soybeans cultivation, with emphasis on its expansion 
in the pampas region. This expansion took different features according to the local context within 
the state and to the background of involved actors. On this point, Vennet, Schneider and Dessein 
(2016) analyzed agricultural units that produced soybeans in southern Brazil and identified three 
categories of practice: niche farming, colonial farming and farming enterprise. 

 Niche farming is characterized by diversified production aimed at the sustainability of the 
farm against pressures exerted by the market economy. These farmers seek specific trade channels, 
such as organic production, rural tourism and the like. Soybean appears as a single element in a 
multiple composition, having no primacy in farmers’ income. In this category, social integration 
focused on locality is observed, which establishes community and regional connections as forms 
of market entry and permanence. 

 The colonial farming involves agri-food production aimed at the market, while keeping 
diversified farming for local subsistence. The commercial activities prioritize soybean, corn and 
wheat crops and pig and poultry farming. This category is characterized by family labor and 
smallholding properties. Technology is implemented to the extent of availability of capital. 
Technical assistance, especially from cooperatives, is quite usual in this group, although it varies 
between properties. Rural succession and the low profitability of small-scale production are 
elements that put the existence of this group under strain. 

Farming enterprise, in turn, focuses on specialized production aimed at the market. It is 
characterized by extensive use of machinery and chemicals in the farming process. Over the last 
few decades, it has been marked by continuous technical improvement mainly enabled by academic 
training of family members, in areas related to agronomy, who implement the acquired knowledge 
on their properties. Despite the smaller number of farms in this category, the group predominates 
in soybean production in Rio Grande do Sul. 
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For a quantitative approximation of the presented categories, data from the Agricultural 
Census relating access to land and rural category to soybean cultivation are illustrative, as shown 
in Table 1. 

Table 1. Number of soybean growers by farming type and land tenure condition, RS, 2017. 

 Total Family farming Non-family farming Others 

  Category 
total 

Category 
% 

Category 
total 

Category 
% 

Category 
total 

Category 
% 

Total 67.26
8 51.582 100,00% 14.337 100,00% 1.349 100,00% 

Owner 59.06
1 45.518 88,24% 12.422 86,64% 1.121 83,09% 

Settler 2.048 1.966 3,81% 82 0,57% - - 
Tenant 4.556 2.854 5,53% 1.511 10,53% 191 14,19% 
Partner 733 543 1,05% 165 1,15% 25 1,85% 
Lending 
Contract 663 522 1,01% 128 0,89% 13 0,96% 

Occupant 183 164 0,31% 17 0,11% 2 0,17% 
Producer 
Without 

Land 
24 15 0,02% 12 0,08% - - 

Source: Agricultural Census (IBGE, 2017). 

Agricultural units under the category of Family Farming predominate among soybean growers 
(76,68%), who also are predominantly landowners. In the data utilized, these category points to 
agricultural units with extension smaller than four fiscal modules, predominance of family labor 
and profitability mostly linked to farming.  They also have annual incomes of up to R$ 415,000. 
It is worth highlighting that under the category of family farming, 6.278 properties have an annual 
income below R$ 23,000. Regarding producers which are not categorized under family farming, 
the high number of tenant status stands out (10,53%). In the data utilized, they are composed by 
properties with a maximum annual income of R$ 2,4 million. An element that confirms 
McMichael’s (2016) claim that greater integration into the market economy is related to a more 
distant relationship with the land as a living space. 

 Elements that dialogue with information obtained in interviews carried out at grain growers’ 
cooperatives in the region, different interviewees pointed out that around 90% of the associated 
producers were smallholders who grew modest crops and accounted for only 10% of the total 
production traded by the cooperative, while the other part originated from bigger properties.  

 The different modes of production and agricultural integration are also related to the ways 
soybean farmers choose to trade their produce. According to Schneider (2016), agricultural markets 
can be thought of as proximity markets, local markets, institutional markets or conventional 
markets. Farmers, especially family farmers, generally access multiple distribution channels. 
However, colonial farmers and soybean farming enterprises generally adopt conventional markets, 
understood as those based on trading of commodities. Therefore, we assume here that these 
categories of farmers will be at the center of operations when considering the relationship between 
RS’ soybean market and the Chinese economy, the focus of the next section. 

3. Chinese Demand for Soybeans 
Average per capita income per Chinese household grew by 187% between 1978 and 2020, 

from 171.2 yuan to 32,188.8 yuan, according to data from China Statistical Yearbook (2021). The 
radical change was the result of institutional reforms initiated in the 1949 revolution and sustained 
throughout the ruling of the Communist Party of China (CPC) (Jabbour, 2010). 

 China’s policies aimed at development of the country have been complementary, enabling 
both domestic economic growth and expansion in the international capitalist market. This process 
was concomitant with fragmentation of production chains in the 1980s and expansion of 
international private conglomerates (McMichael, 2016). In such international context, China 
emerged as a market with wide labor availability and high consumption potential based on rising 
average income. Thus, reforms implemented by the Communist Party of China administration 
recognized the international situation and leveraged elements in dispute to catalyze the national 
economy, interconnecting the domestic and foreign spheres (Jabbour, 2010). 



A&R 2023, Vol. 1, No. 2,0009 6 of 15 
 

 Regarding the agricultural sector, Chinese internationalization was motivated by limited 
availability of arable land in the country. In a nation with such a huge population, this required 
establishing relationships with other countries for assuring food supply (Escher, 2016). Such need 
and the interconnection with preponderant actors in the global trade supply chain—food 
conglomerates—attributed special economic prominence to the grain-meat complex, for two 
reasons. On the one hand, international agro-industrial conglomerates saw meat as a channel for 
maintaining and expanding capital, given the possibility of geographic distribution and expansion 
of the sector (Weis, 2013). On the other hand, the Chinese administration envisaged the possibility 
of expanding domestic consumption by fostering animal protein consumption, thus promoting 
domestic channels for generating and accumulating capital. In this context, the grain became central 
for both direct feeding and processing (Escher & Wilkinson, 2019). This dynamic coincided with 
the expansion of purchasing power, creating a framework for social modernization. Such elements 
are again related with CPC’s goal of establishing a balance between the benefits of a market 
economy and the aspired national development (Chen, 2019). 

Pork is the predominant category of meat in Chinese food culture, a practice rooted in the 
country’s history, as evidence points to the domestication of suiformes since 10,000 BC and 
maintained as a habit today (Schneider, 2011). According to NBSC data, pig production is the 
predominant livestock in the country historically. In 2020, for example, 406 million pigs were 
produced. 

 Regarding production characteristics, until 1985, 95% of pig production in China came from 
producers that did up to five slaughters per year. During the collectivization period, pigs were part 
of the farmers’ supply obligations to the State (Schneider & Sharma, 2014). However, following 
socioeconomic reforms implemented in the late 1970s, a new paradigm was established seeking 
integration, specialization and internationalization of rural production processes (Zhang & 
Donaldson, 2008). As a result, swine production underwent industrialization (Schneider & Sharma, 
2014). The exclusivity of small agricultural units ceased with the promotion of two production 
systems: specialized production units and large conglomerates (Zhang & Zeng, 2022). 

Specialized production units are aimed at capital accumulation in rural areas by means of State 
investment and rural dynamics of differentiation (Zhang & Donaldson, 2008). It involves properties 
with larger land areas, which obtain high productivity rates that enable their maintenance as 
independent pig farmers who produce between 50 and 500 pigs per year (Escher & Wilkinson, 
2019). This system can be managed by family members, small enterprises or cooperatives, 
according to local specificities (Zhang & Zeng, 2021). 

 Large swine conglomerates, in turn, are characterized by large-scale production— between 
500 and 50 thousand pigs per year—and high technological investment in the production process, 
typically through confinement with high density of animals (Schneider, 2011). Stemming from 
accumulation processes that are exogenous to the rural environment, they mostly comprise 
properties linked to foreign private entities— consequence of the opening of Chinese markets in 
the 20th century—or state-owned enterprises (Zhang & Zeng, 2022). From the operational 
perspective, they are not homogeneous, distinguishing by two different operational modes: large-
scale own productions or vertical integration (Schneider & Sharma, 2014). 

The first case refers to companies that directly control production on their farms. A private 
example of these is the WH Group, an international conglomerate based in China and the United 
States self-proclaimed “the largest pork company in the world”. It conducts research into breed 
development, feed, animal production, slaughter, meat processing and marketing. In 2021, the 
company announced revenues of US $27.293 billion.  A state-owned example of these 
conglomerates is China National Cereals, Oils and Foodstuffs Corporation (COFCO). In 2019, it 
produced approximately five million hogs.  Besides this figure, the high investment in different 
segments of the production process stands out, turning the conglomerate into owner of most of the 
technologies that induce changes in the supply chain (Schneider, 2011). 

 Vertical integration is the production strategy adopted by a considerable part of the “Dragon 
Head Enterprises” in Chinese territory. In this modality, private enterprises outsource the process 
to other producers. While the first provide the animals, feed and credit for production improvements, 
the second group provides the property and labor to manage the animals (Huang, 2011). The 
producer’s loss of autonomy, for becoming dependent on the contracting company, would be 
compensated by the reduction of economic risks (Zhang & Zeng, 2022). 

 It is under the control of conglomerates (in both forms of operation) that most Chinese pork 
production takes place. In 2020, 57.1% of slaughters were carried out in properties with more than 
500 animals per year. Nine companies (Muyuan, Zhegbang, Wen’s, New Hope Liuhe, Tiangbang, 
COFCO, Aonong, Trs, Haid) accounted for 10.1% of all slaughters, an increase compared to the 
6.9% concentration observed in 2018 (Han et al., 2022). Simultaneously with the increase in 
concentration in large companies, a reduction is observed in small properties: in 1995, about 95% 
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of Chinese agricultural properties farmed at least one pig, a number that dropped to 27% in 2009 
(Escher et al., 2017). 

 Within the framework of those production models, three moments characterize the 
relationship between pigs farming, China and the international market (Schneider & Sharma, 2014). 
The first one follows the beginning of reforms in 1979, when new technologies introduced in 
China’s countryside allowed for commercial farming to supersede the predominant subsistence 
farming (Schneider, 2011). In the following period, during the turn of the century, China’s 
accession to WTO was allowed under its commitment to apply non-discriminatory economic 
treatment to imports (Escher, 2016). The last period of changes started in the wake of porcine 
reproductive and respiratory syndrome (PRRS) outbreak in 2006, which demanded sacrifice of 
animals in Asia. To reduce the chance of new biological outbreaks, a series of investments 
addressed to large-scale pigs farming was made, seeking to standardize the production chain 
(Schneider & Sharma, 2014). As a result, the number of both animals and production regions 
expanded again (Zhang & Donaldson, 2008). Table 2 shows the distribution of the main production 
areas in 2020. Sichuan is historically the center for pigs farming and has witnessed, besides the 
growth in its territory, the expansion of this production to neighboring locations in the Southeast 
(Schneider, 2011). 

 The expansion of pigs farming within the Chinese territory gave rise to a situation of nutrition 
transition in the country. The traditional Chinese diet, composed of eight parts of grains, one part 
of vegetables and one part of proteins, has progressively been replaced by a western pattern of four 
parts of grains, three parts of vegetables and three parts of proteins (Huang, 2011). Considering 
annual proportions, meat consumption in China quadrupled between 1980 and 2010, when it 
reached an average of 61 kilograms per person in comparison to a world average of 42 kilograms 
(Escher et al., 2017). 

As already mentioned, pigs farming in the country underwent a special change when China 
joined the WTO. Negotiations linked to its accession led China to give up on increasing taxes on 
soybeans imports as a food security strategy and to revise the import duty on the oilseed (Yan et 
al., 2016). Previously to revision, a 13% duty on the value of soybean imports was applied, which 
was reduced to 3% post-agreements (Jamet & Chaumet, 2016). Furthermore, legislative restrictions 
on the entry of transgenic grains were loosened, and transgenic soybeans import was authorized, 
although a ban on domestic cultivation was kept (Yan et al., 2016).  

Table 2. Distribution of pork production covering 31 provinces, autonomous regions and municipalities on 
the Chinese mainland, 2020. 

Province Total Pork Production (million tons.) 

Anhui 40,54 

Beijing 0,29 

Chongqing 10,75 

Fujian 4,94 

Gansu 11,63 

Guangdong 12,41 

Guangxi Zhuang 13,32 

Guizhou 10,51 

Hainan 1,45 

Hebei 37,39 

Heilongjiang 75,03 

Henan 66,95 
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Province Total Pork Production (million tons.) 

Hubei 27,25 

Hunan 29,75 

Inner Mongolia 36,53 

Jiangsu 37,06 

Jiangxi 21,57 

Jilin 38,78 

Liaoning 24,3 

Ningxia Hui 3,73 

Qinghai 1,06 

Shaanxi 12,31 

Shandong 53,57 

Shanghai 0,96 

Shanxi 13,62 

Sichuan 34,99 

Tianjin 2,23 

Tibet 1,04 

Xinjiang 15,27 

Yunnan 18,7 

Zhejiang 5,92 

 Source: Data adapted from the National Bureau of Statistics of China (NBSC). 

 Nonetheless, duty reduction affected only whole grain imports, evidencing a preference for 
the entry of unprocessed raw materials to which domestic processing could add value (Escher, 
2016). The amount of processed grain bran increased from eight million tons in 1997/1998 to 54 
million tons in 2014/2015. The industrial production of feed, which still had no records in the 1980s, 
reached 200 million tons in 2012—the largest production in the world (Jamet & Chaumet, 2016). 
This point highlights the importance of animal protein production as a value-adding channel (Weis, 
2013). 

Regarding characterization of the processing sector, until 2004 most companies were Chinese. 
In that year, international instabilities in the grain price—due to increased phytosanitary control by 
China, the country’s accession to WTO and the crisis in global supply—affected the sector’s 
profitability (Schneider, 2011). Consequently, several local companies lost market position for 
failing to pay back foreign loans. In this context, international actors such as ADM, Bunge, Cargill 
and Louis Dreyfus, as well as Asian groups like Noble, Olam and Wilmar, occupied major positions 
in processing operations in the country. In 2009, these groups controlled 60% of total soybean crush 
in China (Escher & Wilkinson, 2019). Afterward, especially because of workers’ mobilizations, 
the State reintroduced incentives for national companies. So, in 2016, local companies such as 
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COFCO, Heilongjiang Oil and Fat, Hopefull Grain and Oil, Chongqing Gran and Shandong Bohai 
regained economic and social influence, accounting, in that year, for 60% of crush operations 
(Escher, 2016). Between 2000 and 2018, the total amount of soybeans imported into China grew 
by 745.24%, being the fourth product in absolute total amount in annual imports—behind other 
raw materials such as coal and cotton, according to NBSC data. 

 These described trade processes took place under different formal and informal institutional 
layers. Changes in import tariffs required by WTO, diplomacy between different nations and 
construction of logistical channels are some of the most apparent elements of this construction. 
Throughout the 20th century, for example, policies were implemented by China’s government 
aimed at establishing diplomatic ties with countries in the global South so that to guarantee supply 
for its import needs (Furtado & Alves, 2020). It was in this context that trade between Rio Grande 
do Sul and China developed—a topic addressed in the next section. 

4. The Grain-meat Complex, Rio Grande do Sul and China 
Since the 1980s, commercial relations between China and Brazil have been progressively 

closer (Furtado & Alves, 2020). Considering the soybean case, although direct investments have 
been made in both greenfield and brownfield projects (Escher & Wilkinson, 2019), the main results 
are found in exports. Taking data of FAOSTAT for the 21st century as reference, soybean exports 
increased from US $390 million in 2000 to US $27 billion in 2018. For comparison, corn crop 
exports reached a peak of US $59 million in 2015, a quite small figure as compared to soybeans. It 
is in this context that trade relations between China and Rio Grande do Sul intensified. 

 Throughout the 1970s to 1990s the main importers of goods from Rio Grande do Sul were in 
Europe—Germany standing out. According to ANTAQ data, total exports through the Port of Rio 
Grande added up less than six million tons per year and were scattered among several countries. 
As for the characterization of these exports, soybeans already comprised most of them, though in 
the form of bran. In 1980, considering exports volume, soy bran was the leading exported good, 
totaling 2.24 million tons, followed by soybeans, with 719 thousand tons. In the Port of Porto 
Alegre, although total trade flows did not exceed two million tons, soy bran was predominant with 
119,000 tons exported. 

 The characterization of trade flows from Rio Grande do Sul reveals that, in the Second Food 
Regime, crops initially linked to the central economies spread to the periphery of the economic 
system (McMichael, 2016). After the second half of the 20th century, especially, such process 
spread to Latin American countries (Bertrand et al., 1987).  

 Soybean international market changed in the turn of the century, enabling the entry of Rio 
Grande do Sul. As Furtado and Alves (2020) point out, in 2004 China’s acting president, Hu Jintao, 
visited Latin America and established diplomatic and commercial agreements that were expanded 
in the following years. As shown in Figure 2, in 2004 other countries were still the predominant 
destination of RS’ exports—Thailand and Turkey stood out. In the following year, South Korea 
was the largest importer. After 2006, however, China became the destination of most soybean 
exports from RS—in 2014, for example, 77% of cargo were destined to China.  
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Figure 2. Volume of soybean exported from Rio Grande do Sul by destination, 2004–2018. Source: 
Elaborated by the authors based on Trase and ComexStat, several years. 

 Figure 2 also reveals the low participation of soybean domestic consumption, highlighting 
the agri-export character adopted for the crop. In addition to soybeans quantitative growth, its share 
in the state’s Gross Domestic Product (GDP) is also rising. According to ComexStat data, between 
2000 and 2015, while total trade flow for Rio Grande do Sul increased by 29.4%, soybeans trade 
flow alone grew by 344.88% demonstrating that a significant part of the region’s total exports 
growth was due to soybean expansion. It is worth noting that until 2005 the main soybean products 
were flour and bran. In the following years, due to both the Kandir Law and the Chinese preference 
for unprocessed grains, unprocessed soybeans became predominant, with negligible values for 
soybean oil, sauces and proteins. 

It also important to note that, during the 2000s, China strategically shifted its primary source 
of soybeans from the US to Brazil as part of a deliberate effort to diversify its suppliers and reduce 
reliance on any single country for this crucial commodity. This transition was driven by China’s 
aim to safeguard its food sovereignty and construct an economic framework less dependent on US 
dominance in the commodity market. The increasing significance of soybeans for food security and 
economic stability compelled China to establish a more resilient supply chain. Brazil’s emergence 
as a major soybean producer with ample production capabilities provided a fitting solution to 
China’s strategy. By diversifying its soybean sources and diminishing dependence on the US, China 
pursued a more balanced and secure trade structure, aligning with its broader economic and 
geopolitical goals (Furtado & Alves, 2020; McMichael, 2009). 

In this context, the correlation between institutional aspects (diplomatic agreements and 
revision of tariffs on imports) and trade practices (China as main destination and kind of exported 
products) stands out. These factors reveal the social context of inclusion in this particular market 
(Azevedo, 2016). Such correlation can also be established by observing the actors in the supply 
chain. From a global perspective, the grain flow was historically controlled by four transnational 
corporations: the US ADM and Cargill, the Dutch Bunge and the French Louis Dreyfus (Bertrand 
et al., 1987; Lemos et al., 2017);. Nowadays, Singaporeans Wilmar and Olam and the Chinese 
Noble and COFCO show significant international growth (Escher, 2016). The emphasis on these 
conglomerates’ points to international actors with huge social, political and economic influence on 
the grains market, therefore enjoying primacy over other links in the supply chain, both horizontally 
and vertically. Understanding existing power disparities is essential for finding out the conditions 
under which different actors can operate. 

Considering the companies involved in soybean trade flow between Rio Grande do Sul and 
China, Bunge is leading in soybean exports in the South region, according to Trase.earth. Between 
2004 and 2018 (period available in the database), the corporation accounted for 36.24% of the total 
704 million tons exported. Regarding the other companies that follow Bunge as the main exporters, 
there are two from the United States, CHS Inc., accounting for 10.60% of soybean exports, and 
Cargill, with 1.06%. All other companies are originally Brazilian, among which C. Vale (22.10%), 
Camera (6.89%), Três Tentos (6.33%), Giovelli (0.98%) and José Dinon (2.56%) have their origins 
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in Rio Grande do Sul. Also worth mentioning is Amaggi (1.64%), a Brazilian group with growing 
presence in the global soybean supply chain. 

 Similar picture is observed in the composition of China’s importers of soybeans from Rio 
Grande do Sul. Bunge appears again as a central player in the supply chain, with 38.72% of the 704 
million tons imported. Among the other companies, the Brazilian Amaggi stands out (5.07%), 
reaffirming its participation in the international market. The other importers have varied origins: 
the Japanese Marubeni (18.52%), US CHS (10.58%), Cargill (8.41%) and Engelhart (5.05%), 
Bulgarian Agrograin (2.89%), Swiss Glencore (1.95%), Chinese COFCO (1.40%) and Portuguese 
Concordia (0.62%). Therefore, the grain that enters China is processed by actors of different 
nationalities. 

 It is worth noting that the Chinese company COFCO has recently started operations in Rio 
Grande do Sul. The company, that is controlled by the Chinese State, acts as a guide of national 
policies to guarantee internal soybean prices and pigs’ production. Its operations occur in tandem 
with State interests by acting internationally as a preponderant actor and strategically for the 
maintenance of the Chinese national economy (Escher & Wilkinson, 2019). 

 Besides those mentioned companies, throughout the studied period 94 companies exported 
soybeans from Rio Grande do Sul to China. In China, in turn, there were 63 importing companies. 
Despite the considerable number of actors, most of the traded grains was traded by the most 
powerful actors, what brings back the argument on disparate powers between actors, which can be 
perceived in two operational strands: the control of international logistics and the influence on the 
established price of the grain. 

 Regarding destination of goods, when asked about the group’s commercial operation in the 
soybean market, Interviewee 1 replied: “Today we only work with the domestic market. We do not 
work with foreign markets. It is because of the size of the cooperative... We are unable to complete 
a ship load [...]. We already worked, a few years ago, within a pool of companies, cooperatives, 
non-cooperatives... And then there was a quality problem! We are all together in this process and 
then, one does everything right, another one doesn’t and then, it delays... you can’t ship because 
the quality is not adequate. The ship delays. At that time, it was $25,000 a day. It delays, and then 
what? So, what did we do? We gave up group working, because you get into trouble if the other 
doesn’t play its part, right? So, what do we work on today? Most of it goes to the foreign market, 
but it’s through trading, right? One of those international players. That’s how we work … It goes 
to there.” (Interviewee 1) 

 The interviewee points out that the cost of hiring a vessel makes it unfeasible for the 
cooperative—with around 5,300 members—to operate privately in exports. Despite the possibility 
of cooperation among smaller actors, the narrative emphasizes that factors such as trust and 
commitment affect practices in this direction. Hence, the most powerful actors in the supply chain 
take control of trade flows. 

 Such trade flows are also permeated by relationships of trust and security between actors and 
their practices (Cassol, 2018). Elements that are apparent in the response of Interviewee 2, when 
asked about the grain acquisition regime: “We work with 92%, 8% would come from third parties. 
But we work with third parties [...]. When we are able to store, whether we have a space or not... It 
is how we work. So, the primacy is for associate producers. Of course, we have the problem that 
cooperatives have a surname—the associate producer, when you go to a cereals wholesaler, nobody 
says that the wholesaler ‘A’ went bankrupt there... you know, in the cooperative system many 
cooperatives ended up going bankrupt, right? Closing here in our region [...] ‘I’ve already lost 
money with a cooperative, I don’t want to!’, so there’s all that when we go to a new region to gain 
associates, right? So, it’s not that simple, is it? That’s why I always talk to the farmer and say, 
‘Look how many wholesalers have gone bankrupt, have also let them down’. Then he said he no 
longer would deliver to a cooperative; so, I said, I said in a meeting: ‘Sir, and how many cereal 
wholesalers have already gone bankrupt in the region? But these don’t have a surname, right? If 
you act so, will you have to stop planting because you will have no one to sell your produce.’ You 
must trust someone, you will see that there are cooperatives and cooperatives, there are 
manufacturers and manufacturers, there are exporters and exporters [...]” (Interviewee 2) 

 The interviewee’s account brings three elements connected with trust. The first is the 
relationship between associate members and their cooperatives. Beyond a cooperative’s interest in 
associating farmers aiming at its economic viability (Da Ros, 2006), the certainty about adopted 
farming procedures by members guarantees that the goods will be as required by the export market. 
The second element relates to the “cooperative surname”, which means that the company has a 
history and responds in the present for historical processes. This symbolic relationship refers, 
beyond a specific cooperative, to the construction of discourses about the idealized category, which 
generically permeate actors’ perception of risks in negotiation. And third, stemming from the latter, 
the interviewee highlights how the duality between trust and distrust affects the relationships 
between the links in the supply chain—whether manufacturers, exporters or producers— indicating 
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a context in which organizations operate within a framework conditioned by the relationships 
between actors and sometimes waiving profit maximization in the face of uncertainties. 

 As regards grain prices establishment, financialization plays a central role by means of two 
mechanisms. The first is the relation between grain pricing and the dollar standard as a fiduciary 
currency, reaffirming US primacy over the international structure initiated during the Second Food 
Regime (McMichael, 2016). The second regards the establishment of prices by financial platforms 
that project pricing based on the Chicago Board of Trade (CBOT), a board of trade located in the 
United States that intermediates the different indices of values and transactions—therefore, again 
related to financialization (Ávila, 2015). In this context, Brazilian producers face price variations 
directly affected by international fluctuations in currency and grain prices. 

 Exchange rates and price fluctuations through financialization are anchored in the temporal 
logic promoted by capitalism. According to Beckert (2017), the current economic system produces 
a relation between actors and the environment that is based on monetary gains on available items 
and on the constant projection of the future as linked to the expansion of material availability. This 
opens up the possibility that different actors relate to agricultural commodities aiming exclusively 
at speculative gain. According to Clapp (2014), the financial element gets disconnected from the 
material element on which it is based. As a result, price volatility, unequal distribution and 
environmental damage become secondary factors in the rationality shaped by the expectation of 
future gain. 

 In soybean supply chain, this practice is noticeable when companies concentrating a large 
part of transactions (ABCD) are in the ascendant in the financial market. All of them have branches 
dedicated exclusively to shares acquisition and transaction. Besides direct speculation on the 
grain’s value and possibilities for future contracts, they also operate in different food segments, 
benefiting from informational advantages on production, processing and distribution sectors (Clapp, 
2014). 

 According to an interviewee, costs related to logistics, storage and taxes add to international 
pricing. Therefore, price received by growers in Rio Grande do Sul is affected by both international 
dynamics of grain price fluctuation and regional dynamics of logistics costs (Ávila, 2015). 
Domestic market flow is affected by the international pricing, since the export price will determine 
the better profitability in directing the goods either inside or outside the country. This factor also 
affects the market of processed products—such as soy oil—since it implies the opportunity cost 
linked to the raw material. 

 Regarding actors’ possibilities of influencing international price, when referring to China’s 
economic power in the market, the same interviewee stated: “When it wants something, it eases off, 
slows down, right?” (Interviewee 3). Thus, changes in prices are not only determined by dynamics 
related to balance between supply and demand, but also by the agency of central actors in promoting 
or withdrawing trade at certain times. 

 The quoted statement underlines that the economic maintenance of soybean farmers in Rio 
Grande do Sul becomes dependent on international elements based on financialized fluctuation. 
That is, the production structure depends on means under control of preponderant actors in the 
international sphere. Therefore, the formation of the institutional environment is an outcome of 
macroeconomic dynamics operated by transnational conditions combined with processes linked to 
the locality—such as relationships of trust. These elements show the correlation between 
institutions and the trajectory of constitution of the places under analysis (Hodgson, 2008). It is 
observed that components linked to both structural and local dimensions limit operational 
possibilities related to the trade flow while immersed in different dimensions of social practices 
(Cassol, 2018). Consequently, actors in Rio Grande do Sul (producers, traders and public 
administration) operate within margins imposed by economic dynamics to which they acquiesce. 

 Building on this, the developed argument regarding the soybean trade between Rio Grande 
do Sul and China illustrates the food regimes approach (McMichaeL 2016; Friedmann, 2005). 
Soybean production in southern Brazil emerged in a period when agriculture became fundamental 
for accumulating capital and guaranteeing exchange rate stability—the so-called second food 
regime (McMichael, 2016). In this context, animal protein was fostered as a food source for western 
populations, with soybeans playing a crucial role in this production. Intensive animal production 
boosted feed manufacturing, creating a continuous market for soybeans and corn. As a result, meat, 
eggs and milk processing, packaging and transporting companies grew rapidly (Friedma & 
McMichael, 1989). 

 In the 1970s, the oil crisis increased the costs of international logistics and boosted the search 
for alternative use of grains, such as biodiesel, causing a rise in commodity prices. Countries 
indebtedness related to US technological packages significantly increased and other players 
emerged in the international grain market, such as Brazil, Argentina and the Soviet Union 
(Bernstein, 2016). 
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 During this period, the system was restructured following two interconnected changes. The 
first was the end of exchange rates based on the gold convertibility of the dollar, replaced by flexible 
exchange rates. The second was the furthering of the General Agreement on Tariffs and Trade 
(GATT), which, together with the promotion of neoliberalism by other entities, allowed large 
conglomerates to act internationally without depending on state power. This occurred because 
tariffs, legislation and incentives began to be considered by multilateral organizations (McMichael, 
2016). Thus, throughout the 1980s, a new phase of agri-food circulation emerged, marked by 
decrease in the power of States and expansion of corporate dominance—the Third Food Regime 
(Bernstein, 2016). 

 In the context here analyzed, Brazilian revision of duties on unprocessed raw materials—
through Kandir Law—and adoption by China of internationally standardized prices for soybeans 
are examples of those changes. As is the predominance of international conglomerates in 
agricultural trade flow between Rio Grande do Sul and China. Although this finding does not deny 
the relevance of the role of States, it highlights that most disputes occur under coordination of 
private capital actors. The case of the Chinese company COFCO exemplifies this situation: the 
company, with state support, compete with other international conglomerates for export markets 
and, simultaneously, support policies designed by the Chinese State. 

 The various international influences—transnational conglomerates, States and multilateral 
bodies—have created environments within which particular formal and informal norms 
circumscribe the possibilities of economic practices (Hodgson, 2006), thus corroborating the 
postulation of markets as a result of historically rooted institutional processes, with contemporary 
correlations of operationalization, surrounded by values, laws and culture (Azevedo, 2016) and 
conditioned by their historical and geographic dimensions (Hodgson, 2008). Hence, we can infer 
that the studied market only occurs in the form observed because it is the result of processes 
characteristic of RS (and, indirectly, of Brazil) and of specific and characteristic Chinese 
processes—dynamics that, in turn, characterize and condition the actors’ way of acting and 
positioning themselves. However, these practices also interact with relationships of trust and 
synergy between the elements. Therefore, two layers, sometimes complementary and sometimes 
contrasting, characterize the economic positions of different actors: one structural and the other 
local (Cassol & Schneider, 2022; DiMaggio & Louch, 1998). Both dimensions exist in a dialectical 
regime of influence and coordination of collective actions. 

 In summary, the soybean trade between Rio Grande do Sul and China is marked by 
institutions comprising formal layers (laws, policies, international agreements) and informal layers 
(culture, habit, trust) that define the environment where individuals operate, circumscribing their 
actions. Such institutions, in turn, originate from the historical dialectics of power relations in both 
geographic contexts and between them. Processes that were illustrated making use of the food 
regimes approach, by characterizing global agrifood flows over the last century. In this environment, 
the analyzed market emerges as an amalgam of formal and informal institutions, immersed in both 
local and structural dynamics in their different dimensions. 

5. Final Remarks 
Based on the presented data, we bring the three guiding questions back, seeking possible 

inferences: How does soybean export supply originate and is organized by the state of Rio Grande 
do Sul? How does China’s soybean demand in the international market originate and is organized? 
What elements permeate trade flows between both regions? 

 Regarding the first question, Rio Grande do Sul appears as being historically characterized as 
an economy aligned with an agri-export model and having a strong relationship—albeit not 
exclusive—with the soybean market. A factor reinforced throughout the state’s history and 
maintained in contemporary times by action of local actors (for instance, cooperatives inciting 
farmers to grow wheat and replace it with soybeans), through international reverberations 
(fluctuation in grain prices and the corresponding economic advantage) and through State support 
(lines of agricultural credits, technological financing packages and integration into market). Rio 
Grande do Sul supplies the foreign market with unprocessed grains (boosted by Kandir Law) and 
its trade flow is centered in the Port of Rio Grande. Such dynamics are related to an identity 
associated with agribusiness, similarly to the country, and to public costs incurred, especially in 
infrastructure, resulting from the expansion of cargo transports and the reduced fiscal contribution 
of the sector to the state. 

 As to the second question, we noted that the Chinese demand for soybeans stem from two 
related dynamics. On the one hand, China’s development plan exploited the international economy 
as a factor aligned with domestic strategies, especially by using foreign trade to guarantee food 
security. On the other hand, international trade flows are guided by cooperation between the 
Chinese State and conglomerates linked to the grain-meat complex, seeking mutual gains. As a 
result, China facilitated soybean imports to fulfil terms of accession to the WTO. Such imports 
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were used as a source for domestic capital accumulation through promoting consumption of animal 
protein—especially pigs —a market in which large transactional corporations found a lucrative 
operating space. 

 The third question relates to mass production of commodities throughout the 21st century, 
based on the possibility of externalizing phenomena linked to the production cycle—which brings 
social and, mainly, environmental consequences. Soybean production and distribution rely on 
public investment—maintenance of local infrastructure and credit channels, for example. 
Something also promoted by international conglomerates linked to the grain-meat complex. It is 
through the agency of international private capital that certain consumption practices were 
developed throughout the 20th century, resulting in contemporary trade channels linked to soybeans. 
For example, in trade flow between Rio Grande do Sul and China, particularly, one of the identified 
conglomerates was responsible for a third of the total volume traded. Circumstances that also lead 
to financialization, turning soybeans into a prospect of both real and fictitious profit. Such elements 
give rise to the social character of the soybean market, since its existence is subject to structural 
arrangements—such as the guarantee of financialized operations based on floating exchange rates 
and international pricing—and local ones—as trust between actors in the supply chain and in 
construction of identities. 

 This article warns of the urgency of considering production sectors as immersed in their 
contexts and linked to local dynamics. Therefore, it points to the need for economic flows to be 
considered as social processes and, so, for public policies and civil society actions to devise 
economic integration alternatives based on the premise that all practices are exclusively based on 
human sociability.   
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Abstract: Using the provincial panel data from 1978 to 2020 as the research object, this study employs the 
fixed effect SFA-Malmquist model to measure the agricultural total factor productivity of each province and 
city, and the spatial correlation of China’s agricultural total factor productivity is determined by Moran’s I. 
On this basis, three weights (adjacency, economy, geography) are included as spatial factors in three spatial 
β-convergence models (SAR, SEM and SDM), and the spatial convergence characteristics of China’s agricul-
tural total factor productivity are analyzed in different time periods and different regions. The study found that: 
First, China’s agricultural total factor productivity shows a growing trend, but as time goes on, its growth rate 
gradually slows down, and the growth rate in the eastern region is higher than that in the central and western 
regions. Second, China’s agricultural total factor productivity has significant spatial correlation and spatial 
convergence characteristics. The differences in agricultural total factor productivity in various regions are 
shrinking over time, and the spatial spillover effect significantly shortens the convergence process. Due to 
spatial convergence, while carrying out agricultural production, all regions should thoroughly consider the 
advantages of agricultural resources in neighboring regions and strengthen cooperation and exchanges be-
tween regions. 

Keywords: agriculture; total factor productivity; spatial convergence; unbalance 

1. Introduction
Agricultural production is an important foundation for national stability and security (Hou & 

Yao, 2018). Since 1978, relying on the increase of factor input and the improvement of total factor 
productivity, China’s agriculture has made great achievements. The output and productivity of all 
major agricultural sectors have increased rapidly (Gong, 2018b; Lin, 1992). It has created a miracle 
that less than 10 % of the world’s arable land has fed 20 % of its population (Li, 2014). The total 
agricultural output increased from 111.8 billion yuan in 1978 to 7174.8 billion yuan in 2020. How-
ever, with the increasing scarcity of land resources, the shortage of rural labor force caused by the 
acceleration of urbanization, and the diminishing marginal returns caused by the continuous im-
provement of fertilizer and machinery inputs, the contribution of the increase in agricultural factor 
inputs to agricultural growth is constantly decreasing. The way to promote agricultural develop-
ment by relying on factor inputs is unsustainable. Continuously improving agricultural total factor 
productivity has almost become the only choice (Gao, 2015; Yang & Yang, 2013). 

Due to the critical role of total factor productivity (TFP) in agricultural production, TFP has 
become an essential focus of scholars at home and abroad. Scholars use different methods (para-
metric methods and nonparametric methods), different data (macro statistical data, micro survey 
data), and different production function settings (Translog production function or C-D function) to 
measure China’s agricultural TFP to make an accurate judgment on the trend of China’s agricul-
tural TFP and its key influencing factors (Pan & Ying, 2012). Still, the existing research has not 
reached a more consistent conclusion. This difference is not only reflected in the measurement 
value of China’s agricultural TFP (Wu et al., 2001; Xu, 1999). More importantly, they have severe 
differences in China’s agricultural TFP trend after the 1990s (Gong, 2018a). Some scholars believe 
that the growth rate of China’s agricultural TFP continued to increase in the late 1990s and began 
to slow down until 2000 (Nin Pratt et al., 2008; Wang et al., 2013). Other scholars believe that the 
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growth rate of China’s agricultural TFP has slowed down since the 1990s (Chen et al., 2008; Zhou 
& Zhang, 2013). 

In addition, since 1978, with the improvement of China’s agricultural market and the contin-
uous improvement of regional openness and exchange, the flow of agricultural production factors 
between regions has become increasingly frequent (Wu, 2010). Spatial factors have become a neg-
ligible factor affecting China’s agricultural TFP, but few scholars have included spatial factors in 
the analysis of agricultural TFP (Wang et al., 2010). Productivity caused by differences in resource 
endowments and agricultural development levels in different regions spatially distributed? How 
will this spatial difference evolve? Does the difference in total factor productivity among regions 
show a convergence trend over time? If so, what form of convergence? What are the characteristics 
of convergence in different regions and stages of development? Therefore, the scientific measure-
ment of China’s agricultural TFP since 1978 and the analysis of its differences in spatial distribution 
and the convergence law over time will help to understand the growing trend of China’s agricultural 
TFP since the reform and opening up. An objective understanding of the spatial differences and 
temporal evolution of agricultural TFP is of great significance for strengthening the scientific flow 
of agricultural production factors between regions, the sustainable development of China’s agricul-
ture, and the realization of modern agriculture. 

2. Literature Review 
Based on the critical role of TFP in China’s agricultural development, scholars have con-

ducted detailed and in-depth research on it, which has laid a good foundation for the writing of this 
paper. Throughout the existing literature, the research on China’s agricultural TFP can be elabo-
rated from three aspects: research methods, research contents, and research conclusions. 

Research methods. Currently, the mainstream methods for measuring the TFP of China’s ag-
riculture are Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). Huo et al. 
(2011), Yang and Yang (2013), Wang and Zhang (2018) all used the DEA method to measure the 
TFP of Chinese agriculture. Considering that agricultural production is a complex process and will 
be affected by many factors in the production process, DEA can only consider the primary input 
and cannot attribute other factors to the residual term, which may affect measurement accuracy to 
a certain extent (Shi et al., 2016). For this reason, some scholars suggest using the SFA method to 
measure the TFP of China’s agriculture. Quan (2009), Kuang (2012), Zhang and Cao (2013) began 
to use the SFA method to measure China’s agricultural TFP. Although the total factor productivity 
measured by the SFA method is more in line with the characteristics of agricultural production, and 
the measurement results are better than DEA to a certain extent (Fan & Li, 2012), the existing 
literature on the measurement of agricultural TFP by SFA ignores the personal effect in the non-
efficiency term, which may overestimate the technical efficiency, thus affecting the measurement 
results of TFP (Kumbhakar, 1990). 

In the research content aspect, the scholars’ research on agricultural TFP has been measured 
in detail from different levels, such as micro (Gao et al., 2016; Jia & Xia, 2017) and macro (Wang 
& Zhang, 2018), and the critical factors affecting TFP have been studied (Li & Yin, 2017; Zeng et 
al., 2018). However, the above studies regard different regions as independent individuals and do 
not include the inter-regional flow of production factors and the resulting spatial relationship. With 
the development of spatial econometrics and economic geography, some scholars began to consider 
the role of spatial factors in agricultural production. For example, Wang et al. (2010) used the 
spatial econometric model to study the growth of China’s agricultural TFP and its influencing fac-
tors from 1992 to 2017. Yang and Yang (2013) studied the spatial correlation of China’s agricul-
tural TFP and concluded that the agricultural TFP in the adjacent areas has obvious spatial effects. 

In terms of research conclusions, there are some differences in the existing research on the 
measurement value of China’s agricultural TFP. For example, for the study of the average annual 
growth rate of China’s agricultural TFP from 1981 to 1995, Xu (1999) showed that the average 
annual growth rate of the above interval was −1.48 %, while Wu et al. (2001) obtained an average 
annual growth rate of 2.41 %. In addition, scholars have significant differences in the trend of 
China’s agricultural TFP after the 1990s (Gong, 2018a). Nin et al. (2008), Wang et al. (2013) be-
lieve that the growth rate of China’s agricultural TFP continued to increase in the late 1990s, while 
Chen et al. (2008), Zhou and Zhang (2013) believe that the growth rate of China’s agricultural TFP 
has slowed since the 1990s. 

In summary, the existing literature can still be expanded from the following aspects. Consid-
ering that the SFA method has more advantages than DEA in the measurement of agricultural TFP, 
the existing research on the measurement of agricultural TFP using SFA ignores the individual 
effects in the non-efficiency term, so the SFA-Malmquist method with fixed effects can be used to 
solve this problem. In addition, with the strengthening of inter-regional exchanges, spatial factors 
play an increasingly important role in agricultural production. The convergence model considering 
spatial effects can deeply analyze the evolution of agricultural TFP in time and space. Based on 
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this, this paper will take China’s provincial agricultural production data from 1978 to 2020 as the 
research unit and use the fixed effect SFA-Malmquist model, which can separate the individual 
effect and the non-efficiency term to re-measure China’s agricultural TFP. On this basis, Moran’s 
I and spatial convergence model are used to study the evolution of agricultural TFP in time and 
space and the influence of spatial factors on agricultural TFP. 

3. Research Methods 

3.1. Fixed Effect SFA-Malmquist Model 
DEA and SFA are the mainstream methods to measure Total factor productivity (TFP), the 

Malmquist index is a specific index established by Caves et al. (1982) to measure the change in 
total factor productivity based on the Malmquist consumption index and Shepherd distance func-
tion. In practical research, the distance function in the Malmquist index is generally calculated by 
parametric methods (such as SFA) or non-parametric methods (such as DEA) and then decomposed 
(Shi et al., 2016). As mentioned before, the agricultural production process is affected by many 
factors. SFA can incorporate these random factors into the classical white noise term and has more 
advantages than the DEA method in measuring agricultural production efficiency. Considering that 
previous studies ignore the individual effects of regions, this may cause bias in the measurement 
results (Kumbhakar, 1990). Therefore, this paper will use the fixed effect SFA model proposed by 
Greene (2005) to measure technical efficiency (TE) and then use the Malmquist index decomposi-
tion method to obtain total factor productivity (TFP), technical change (TPCH), technical efficiency 
change (TECH). The basic model of SFA-Malmquist with fixed effect is as follows: 

( )β α µ= + + −ln ;it it i it itY lnf X v  (1) 

Here, itY  is the output of province i  in t  years,  itX is the input of i  in t  years, β  is 

the parameter to be estimated, ( )  ·  f is the efficient production function, αi  is the fixed effect of 

the province, itv  is the random error term, and assume that ( )σ 2~ ? 0,it vv iidN , µit  is the tech-

nical inefficiency term. The setting of ( )·f  has many forms in practical research. The C-D and 
Translog functions are the most commonly used function forms. To study the accuracy of this paper, 
the authors employed the LR test. LR test shows that the model in the form of the Translog function 
is more in line with the data of this paper. Therefore, Formula (1) can be rewritten as follows: 

β β β β β β α µ= + + × + × + × + ∑ × + + −∑ ∑∑ 2
0ln it j ijt t jl ijt ilt tt jt ijt i it it

j i l

Y lnx t lnx lnx t t lnx v  (2) 

Technical efficiency (TE) can be expressed as: 

( ) ( )µ µ= − ≤ − ≤exp ,?0 exp 1it it itTE  (3) 

According to the formula (3), the change of technical efficiency from t to t + 1 can be calcu-
lated and denoted as +, 1  t t

iTECH , 

+
+= ，

, 1
1 /t t

i i t itTECH TE TE  (4) 

The technical change ( +, 1t t
iTPCH ) can be derived from the derivation of formula (2). Because 

under the assumption of non-neutral technical change, technical change will change with the change 
of input, the technical change value of adjacent periods should be taken as the geometric average 
value, that is 

( )
++

  ∂∂
 = +   ∂ ∂ +  

, 1, 1 1exp
2 1

i tt t it
i

lnYlnY
TPCH

t t
 (5) 

Considering that most scholars believe that agricultural production conforms to the character-
istics of constant returns to scale (Xu et al., 2011), in addition, it is assumed that the TFP obtained 
under variable returns to scale will be affected by the scale of production (Liu & Meng, 2002). 
Therefore, under the condition of constant returns to scale, Malmquist index decomposition see 
formula (6), 
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+ + += ×, 1 , 1 , 1t t t t t t
i i iTFP TECH TPCH  (6) 

3.2. Moran’s I Index 
Different regions have differences in agricultural TFP due to different resource endowments. 

However, according to Tobler (1970), “the first law of geography”, there is a specific relationship 
between everything, and with the shortening of distance, this relationship will become closer and 
closer. (Tobler, 1970) A specific spatial correlation in agricultural TFP may exist. Therefore, testing 
the spatial correlation of agricultural TFP is crucial. This paper will use the most popular Moran’s 
I to measure the spatial correlation of agricultural TFP in different regions. Moran’s I can be ex-
pressed as: 

( )( )
= =

= =

− −
=
∑ ∑

∑ ∑
1 1

2
1 1

I

n n
ij i ji j
n n

iji j

w x x x x

S w
 (7) 

Where, ( )
=

−
=
∑ 2

2 1

n
ii
x x

S
n

 is the variance of the sample, ijw  is the spatial weight matrix, 

and ix  and  jx are the observed values of spatial positions i and j . The value of I is between 
−1 and 1, greater than 0 indicates positive spatial correlation, less than 0 indicates negative spatial 
correlation, and equal to 0 indicates no spatial correlation. 

In this paper, three spatial weight matrices will be selected, which are geographical adjacency 
spatial weight matrix ( 1w ), economic distance spatial weight matrix ( 2w ) and spatial distance 

weight matrix ( 3w ). 

Geographical adjacency space weight matrix:


= = 


，

，1
1 ?        

 
0 ?        ij

i isadjacent to j
w w

i isnot adjacent to j
 

Economic distance spatial weight matrix:




−= = 


=

，

，

2

1        
 

0 ?                   
i jij

i isadjacent to j
Y Yw w

i j

 

Spatial distance weight matrix:
 ≠

= =  =

，

，3
1 /

 
0ij
d i j

w w
i j

 

Among them, i  and j  represent region i  and region j  respectively,  jY represents the 

average per capita real GDP of region j  in the sample interval, and d represents the geographical 
distance between the provincial capitals of region i  and region j . 

3.3. Spatial Convergence Model 
There are three classical convergence models, σ  convergence, β  convergence, and club 

convergence, among which β  convergence is the most widely used. β -convergence can be di-
vided into absolute β -convergence and conditional β -convergence. It mainly tests whether the 
growth rate of inter-provincial agricultural TFP converges. The main difference between absolute 
β -convergence and conditional β -convergence is that absolute β -convergence assumes that the 
resource endowments of each region are the same. In contrast, conditional β -convergence consid-
ers the differences in resource endowments in different regions, which is more in line with actual 
production activities (Zhang et al., 2015). Therefore, this paper will use  β  convergence to test the 
convergence of agricultural TFP, and compare the difference between absolute  β -convergence and 
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conditional  β -convergence. The classical conditional  β -convergence model is shown in formula 

(8). If θ
=
∑ , ,

1

n

k k i t
k

lnX  is removed, it is absolute  β -convergence. 

α θ ε+
=

− = + + +∑, 1 , , , , ,
1

ln ln βln
n

i t i t i t k k i t i t
k

TFP TFP TFP lnX  (8) 

Since the traditional  β -convergence model does not consider the spatial influence, the con-
vergence conclusion is biased (Yu, 2015). Therefore, this paper constructs a  β -convergence model 
considering spatial factors and compares the differences between the traditional  β -convergence 
model and the spatial  β -convergence model. Since spatial models can be divided into the spatial 
autoregressive model (SAR), spatial error model (SEM), and spatial Dubin model (SDM), the cor-
responding  β -convergence models considering spatial factors can be divided into the following 
three types: 

The  β -convergence model of SAR: 

α ρ θ ε++

= =

= + + + +∑ ∑, 1, 1
, , , ,

, ,1 1

βln
n n

j ti t
ij i t k k i t i t

i t j tj k

TFPTFP
ln w ln TFP lnX
TFP TFP

 (9) 

The  β -convergence model of SEM: 

α θ ϕ+

=

= + + +∑, 1
, , , ,

, 1

βln
n

i t
i t k k i t i t

i t k

TFP
ln TFP lnX
TFP

;ϕ ρ ϕ ε
=

= +∑, , ,
1

 
n

i t ij i t i t
j

w  (10) 

The  β -convergence model of SDM: 

α ρ θ ε++

= = = =

= + + + +∅ +∑ ∑ ∑, 1, 1
, , , , , ,

, ,1 1 1, 1

βln
n n n

j ti t
ij i t k k i t k ij k i t i t

i t j tj k j k

TFPTFP
ln w ln TFP lnX w lnX
TFP TFP

 (11) 

Among them, ,i tTFP  and +, 1i tTFP  are the agricultural TFP of province i  in period t  and 
period +1t , respectively, and β  is the convergence judgment coefficient. If  β is significantly 
negative, it indicates convergence, and the convergence speed ω  can be calculated according to 

ω−= − −（ ）β 1 / TTe . θk  is the estimated coefficient of the control variable ,i tX . When θ = 0k , it 

is absolute β -convergence. Otherwise, it is conditional β -convergence. ε ,i t  is a random error 

term and is assumed to satisfy ( )ε σ 2
, ~ 0,i t iid . ρ  is the spatial auto-regressive coefficient, ϕ ,i t  

is the error term of spatial autocorrelation, and ∅k  is the regression coefficient of the interaction 

effect between the control variable and the spatial weight matrix. ijw  is the spatial weight matrix. 

4. Index Selection and Data Sources 
To conduct in-depth research on China’s agricultural total factor productivity, the starting year 

of this study was selected as 1978, and all data were from the “China Statistical Yearbook”, “China 
Rural Statistical Yearbook”, “New China 50 Years Statistical Data Compilation”. Considering the 
problem of merging Sichuan and Chongqing before, Chongqing is classified into Sichuan. Hainan, 
and Tibet, not within the scope of this study due to the lack of data. This paper finally obtains the 
panel data of 28 provinces and cities from 1978 to 2020 for 43 years. 

In constructing the input-output index system for measuring agricultural TFP, this paper refers 
to the general treatment method of the existing literature (Gong, 2018a; Shi et al., 2016). It selects 
the number of employees in agriculture, forestry, animal husbandry, and fishery (ten thousand peo-
ple), the sown area of crops (thousand hectares), the total power of agricultural machinery (ten 
thousand kilowatts), and the application amount of agricultural fertilizer (ten thousand tons) to rep-
resent the labor input, land input, capital input and intermediate input in the process of agricultural 
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production, respectively. Taking the total output value of agriculture, forestry, animal husbandry, 
and fishery (billion yuan) as output and conducted price index deflations based on the 1978. 

By studying the existing literature on the selection of influencing factors of agricultural TFP 
and considering data availability. This paper selects the proportion of the affected area of crops to 
the affected area (Gong, 2018a), based on the per capita GDP after the deflator in 1978 (Zhang & 
Chen, 2015), the proportion of the urban resident population to the total population (Yang et al., 
2017), the proportion of the total highway mileage to the land area of the province (Zhuo & Zeng, 
2018), the proportion of the added value of the secondary industry to the GDP (Wang & Zhang, 
2018), and the proportion of the effective irrigation area to the sown area of crops (Gong, 2018a), 
representing the disaster situation (Disas), economic development (Gdppc), urbanization level 
(Citil), transportation convenience (Trans), the development of the secondary industry (Indus) and 
irrigation level (Irrig). A total of 6 variables are used as the driving factors affecting the spatial and 
temporal changes of agricultural TFP. 

5. Empirical Results and Analysis 
5.1. The Measurement and Timing Analysis of China’s Agricultural TFP 

Before measuring the TFP of agriculture, this paper first analyzes the input-output data of 
provincial agricultural production from 1978 to 2020. The first two lines of Table 1 show the annual 
agricultural input-output level in 1978 and 2020. The last six lines show the agricultural input-
output’s average annual growth rate in different agricultural development stages. The total agricul-
tural output value continued to increase throughout the study period, with an average annual growth 
rate of more than 4 %. Regarding input factors, the input of land, fertilizer, and machinery has 
shown an increasing trend. Only the labor input has shown a decreasing trend in individual stages. 
This is mainly due to the advancement of urbanization and industrialization. The large-scale trans-
fer of rural surplus labor to the city has reduced the labor engaged in agricultural production. 

Table 1. Input and output of agricultural production. 

  Total Agricultural 
Output Value Labour Land Fertilizer Mechanics 

  Billion Yuan Ten Thousand People Hectares 10000 Tons 10000 Kilowatts 
Annual Value 1978 1397 28318 146379 884 11749.9 

 2020 137782.2 17715 167487 5250.7 105622.1 
Average Annual Growth Rate 

 1978–1984 6.9% 2.1% 9.4% 11.8% 9.4% 

 1985–1989 6.2% −0.4% 7.4% 7.4% 7.4% 
 1990–1993 5.5% 0.6% 3.2% 7.5% 3.2% 
 1994–1998 7.6% 0.3% 5.6% 5.9% 5.6% 
 1999–2003 4.7% −0.7% 5.1% 1.3% 5.1% 
 2004–2020 4.5% −1.0% 3.6% 1.9% 3.6% 

Note: According to Gong (2018a)’ s division of agricultural production stages, China’s agricultural develop-
ment since 1978 can be divided into six stages, namely, the transition period from a collective economy to a 
family-based agricultural system from 1978 to 1984, the dual-track system period from 1985 to 1989, the in-
depth reform stage of the joint procurement and marketing system from 1990 to 1993, the tax and fee system 
reform stage from 1994 to 1998, the comprehensive economic reform period of rural development from 1999 
to 2003, and the focus on the development period of agriculture, rural areas, and farmers from 2004 to the 
present. 

The agricultural TFP of 28 provinces for 42 years from 1979 to 2020 was calculated using the 
fixed effects SFA Malmquist model in Stata software. It analyzes the development trend of China’s 
agricultural TFP since 1979. Figure 1 shows the average annual growth rate of China’s agricultural 
TFP. By observing the figure, it can be found that the Malmquist productivity index calculated each 
year is greater than 1, indicating that the TFP of China’s agriculture has shown a growing trend in 
the past four decades. However, over time, the growth rate of agricultural TFP gradually slowed 
down, especially since 1993, the average annual growth rate of TFP began to decline, which also 
verified the previous research conclusions, that is, from the 1990s, the growth rate of China’s agri-
cultural TFP slowed down (Chen et al., 2008; Zhou & Zhang, 2013). 
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Figure 1. Annual growth rate of agricultural total factor productivity in China. 
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The above analysis shows that China’s agricultural TFP has been growing since 1979. What 
is the reason for the growth of TFP? According to Equations (4), (5), and (6), the growth of TFP 
can be decomposed into technological progress (TPCH) and changes in technical efficiency 
(TECH), and the factor decomposition diagram of TFP growth since 1978 is obtained. It can be 
seen from Figure 3 that the value of technical progress (TPCH) is all greater than 1, and some 
values of Technical Efficiency Change (TECH) are less than 1. This shows that the growth of 
China’s agricultural total factor productivity mainly depends on the progress of agricultural tech-
nology. In contrast, technical efficiency sometimes plays the opposite role, which to some extent 
offsets the effect of the improvement of agricultural technology level. Further analysis of the trend 
of technological progress and technical efficiency changes before and after 1990 shows that after 
the 1990s, the growth rate of technological progress began to slow down, and the growth rate of 
technical efficiency showed a slow upward trend, indicating that the impact of technical efficiency 
on agricultural total factor productivity began to strengthen gradually. 

 

Figure 3. Decomposition of China’s agricultural total factor productivity growth from 1979 to 2020. 
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To test whether there is a spatial correlation in the TFP of agricultural production, Table 2 
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Table 2. Moran’s I index of agricultural total factor productivity from 1979 to 2020. 

Year Moran’s I P-value Year Moran’s I P-value 
1979 0.087 0.314 2000 0.400 0.000 
1980 0.105 0.238 2001 0.427 0.000 
1981 0.073 0.336 2002 0.441 0.000 
1982 0.051 0.465 2003 0.447 0.000 
1983 0.112 0.205 2004 0.449 0.000 
1984 0.150 0.126 2005 0.454 0.000 
1985 0.210 0.039 2006 0.454 0.000 
1986 0.233 0.025 2007 0.460 0.000 
1987 0.239 0.022 2008 0.464 0.000 
1988 0.271 0.012 2009 0.466 0.000 
1989 0.289 0.008 2010 0.470 0.000 
1990 0.329 0.003 2011 0.473 0.000 
1991 0.305 0.005 2012 0.472 0.000 
1992 0.311 0.005 2013 0.478 0.000 
1993 0.343 0.002 2014 0.483 0.000 
1994 0.351 0.002 2015 0.486 0.000 
1995 0.375 0.001 2016 0.482 0.000 
1996 0.384 0.001 2017 0.470 0.000 
1997 0.376 0.001 2018 0.479 0.000 
1998 0.382 0.001 2019 0.483 0.000 
1999 0.366 0.001 2020 0.476 0.000 

Table 3. LISA clustering results in insignificant years. 

 H-H L-L H-L L-H 
1979  Shanxi, Shaanxi Sichuan  
1980  Shaanxi, Gansu, Ningxia Sichuan, Xinjiang  
1981  Shanxi, Shaanxi, Ningxia Jilin NeiMongol 
1982  Shanxi., Shaanxi, Gansu, Ningxia Jilin, Sichuan, Xinjiang NeiMongol 
1983  NeiMongol, Shaanxi, Gansu, Ningxia Xinjiang  
1984 Tianjin Shanxi, NeiMongol, Shaanxi, Gansu, Ningxia Sichuan, Xinjiang  

Note: H-H represents high value surrounded by high value, L-L represents low value surrounded by low value, 
H-L represents high value surrounded by low value, and L-H represents low value surrounded by high value. 

5.3. Convergence Analysis of Agricultural Total Factor Productivity in China 
For the traditional β-convergence model, the Hausman test is first carried out to determine 

that the fixed effect should be selected to analyze the convergence of China’s agricultural TFP. As 
mentioned, China’s agricultural TFP has a spatial correlation. Based on three spatial econometric 
models, three spatial β-convergence models (SAR spatial β-convergence model, SEM spatial β-
convergence model, and SDM spatial β-convergence model) are constructed. According to the 
Wald test, the SDM spatial β-convergence model is optimal, and the spatial Hausman test results 
still support the fixed effect. 

It can be seen from Table 4 that the coefficients of ,i tlnTFP  in all models are significantly 
negative, which indicates that there is an apparent convergence trend in China’s agricultural total 
factor productivity and the gap between regional agricultural total factor productivity is shrinking. 
Through comparing the traditional absolute convergence and conditional convergence, the study 
found that the convergence speed of conditional convergence (0.065) is greater than that of absolute 
convergence (0.049). The same conclusion can be drawn by comparing spatial absolute and spatial 
conditional convergence. That is, the convergence speed of spatial conditional convergence (0.088) 
is greater than that of spatial absolute convergence (0.074). This is because conditional convergence 
considers the differences in production factors between regions, shortens the period of convergence, 
and makes the convergence test closer to reality; Spatial factors have the effect of accelerating 
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convergence. By comparing the convergence speed of the three models of spatial absolute β-con-
vergence and spatial conditional β-convergence, it can be found that the convergence speed of SAR, 
SEM, and SDM with spatial conditional β-convergence is significantly faster than that of spatial 
absolute β-convergence. This phenomenon may be because the spatial spillover effect or diffusion 
effect narrows the inter-regional agricultural production gap, thus accelerating the convergence 
speed. For the control variables, the direction and significance level of the influence of the coeffi-
cients of the traditional convergence model and the spatial convergence model on the TFP of agri-
culture is the same. There are some differences in the size of the coefficients. Because the control 
variables are not the focus of this study, they are not explicitly analyzed. 

Table 4. The β convergence of agricultural total factor productivity in China. 

Variable 
Traditional Ab-

solute 
Spatial Absolute β-conver-

gence 
Traditional Condi-

tional 
Spatial Conditional β-con-

vergence 
𝛃𝛃-convergence SAR SEM SDM 𝛃𝛃-convergence SAR SEM SDM 

,i tlnTFP  −0.048*** 
-

0.047**
* 

-
0.052**

* 

-
0.071**

* 
−0.063*** 

-
0.061**

* 

-
0.065**

* 

-
0.077**

* 
 (0.011) (0.005) (0.005) (0.007) (0.015) (0.006) (0.006) (0.007) 

Trans     0.010 0.010**
* 0.010** −0.006 

     (0.006) (0.004) (0.004) (0.006) 
Citil     0.003 0.003 0.003 0.004 

     (0.003) (0.004) (0.004) (0.004) 
Irrig     0.018 0.019 0.019 0.012 

     (0.020) (0.013) (0.013) (0.014) 
Disas     0.001 0.001 0.001 0.001 

     (0.006) (0.005) (0.005) (0.005) 
Indus     −0.016 −0.016 −0.019 −0.030* 

     (0.026) (0.015) (0.015) (0.016) 

( )ln Gdppc      0.023*** 0.022**
* 

0.023**
* 

0.022**
* 

     (0.006) (0.005) (0.005) (0.005) 
Constant 0.114***    −0.048    

 (0.022)    (0.036)    

Rho  0.104** 0.145**
* 

0.145**
*  0.098** 0.129**

* 
0.140**

* 
  (0.040) (0.041) (0.041)  (0.040) (0.041) (0.041) 

R-squared 0.468 0.154 0.146 0.031 0.484 0.095 0.095 0.188 
Convergence 

Rate 
 

0.049 0.048 0.053 0.074 0.065 0.063 0.067 0.080 

Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Based on analyzing the influence of spatial effect on the convergence of China’s agricultural 
total factor productivity, the following will further study the spatial convergence characteristics of 
China’s agricultural total factor productivity by period (before and after the 1990s), by region (east-
ern, central and western) and by using different spatial weight matrices (geographical adjacency 
spatial weight matrix 

1w , economic distance spatial weight matrix 
2w  and spatial distance 

weight matrix 
3w ). 

Table 5 reports the regression results of the SDM conditional β-convergence model with fixed 
effects in different periods. On the whole, the results of each convergence model with different 
spatial weight matrices in different periods show that China’s agricultural TFP has the characteris-
tics of convergence, which also shows that the convergence trend of China’s agricultural TFP is 
robust; The convergence rate of China’s agricultural TFP shows a decreasing trend. The conver-
gence rate between 1979–1990 is significantly higher than between 1991–2020. This may be due 
to the lack of production resources in the early stage of reform and opening up. The agricultural 
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production conditions in various regions vary considerably. With the reform and opening up, the 
flow rate of agricultural production factors between regions continues to increase. Agricultural pro-
duction in various regions has released great potential, and inefficient regions are growing faster. 
However, with the deepening of the reform, the gap in resource endowments between regions has 
gradually narrowed, the conditions for agricultural production have been continuously improved, 
and agriculture has been continuously transformed from ‘quantity growth’ to ‘quality growth’, 
which has slowed down the convergence rate to a certain extent. 

Table 5. Conditional β convergence of agricultural total factor productivity in different periods based on SDM.  

Variable 
1979–1990 1991–2020 1979–2020 

 1w   2w   3w   1w   2w   3w   1w   2w   3w  

,i tlnTFP  −0.377**
* 

−0.415**
* 

−0.338**
* 

−0.032**
* 

−0.030**
* −0.025*** −0.077**

* 
−0.067**

* 
−0.063**

* 
 (0.025) (0.029) (0.026) (0.008) (0.007) (0.007) (0.007) (0.007) (0.006) 

Rho 0.161** −0.159** 0.120 0.283*** −0.128** 0.252** 0.140*** −0.132**
* 0.182* 

 (0.071) (0.077) (0.183) (0.048) (0.054) (0.107) (0.041) (0.045) (0.094) 
R-squared 0.260 0.214 0.161 0.059 0.188 0.217 0.188 0.159 0.025 
Conver-

gence Rate 
 

0.473 0.536 0.412 0.033 0.030 0.025 0.080 0.069 0.065 

Control 
 Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Fixed Ef-
fect Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Note: The control variables are the disaster situation (Disas), economic development (Gdppc), urbanization 
level (Citil), transportation convenience (Trans), secondary industry development (Indus), and irrigation level 
(Irrig) mentioned above. 

Table 6 reports the regression results of the conditional β-convergence model of SDM with 
fixed effects in different regions. Overall, the convergence model results of different regions and 
spatial weight matrices show that China’s agricultural TFP has convergence characteristics. The 
convergence speed of China’s agricultural TFP shows a spatial distribution pattern decreasing in 
the western, eastern, and central regions. The western region has the fastest convergence rate. The 
possible reason is that the western region is rich in agricultural resources. Still, the social and eco-
nomic development level is low, and the level of agricultural production technology is relatively 
low. However, with the advancement of the Western development strategy, the Western region has 
developed rapidly. The acceleration of inter-regional resource and technology flow has shortened 
the convergence cycle of agricultural TFP. The central region is primarily the prominent grain-
producing area, the agricultural production conditions are relatively perfect, and the overall level 
of agricultural production technology is relatively high. Although the eastern region is economi-
cally developed, agricultural production is not its primary goal. The marginal effect of technology 
and capital investment in the central and eastern regions is decreasing, and the convergence rate of 
agricultural TFP is slow. 

 

 

 

 

 

 

 

 



A&R 2023, Vol. 1, No. 2, 0010 12 of 14 
 

Table 6. Conditional β convergence of agricultural total factor productivity in different areas based on SDM. 

Variable 
Eastern Central Western 

1w  2w  3w  1w  2w  3w  1w  2w  3w  

,i tlnTFP  −0.125**
* 

−0.174**
* 

−0.093**
* 

−0.098**
* −0.172*** −0.145*** −0.192**

* 
−0.096**

* 
−0.282**

* 
 (0.022) (0.027) (0.025) (0.022) (0.029) (0.029) (0.017) (0.013) (0.025) 

Rho −0.094 −0.761**
* 

−0.569**
* 

−0.288**
* −0.230*** −0.191** −0.487**

* 
−0.221**

* 
−0.932**

* 
 (0.061) (0.083) (0.118) (0.048) (0.079) (0.088) (0.076) (0.069) (0.148) 

R-squared 0.350 0.433 0.367 0.217 0.161 0.267 0.207 0.099 0.232 
Conver-

gence Rate 
 

0.134 0.191 0.098 0.103 0.189 0.157 0.213 0.101 0.331 

Control Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Fixed Ef-

fect Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Note: The control variables are the disaster situation (Disas), economic development (Gdppc), urbanization 
level (Citil), transportation convenience (Trans), secondary industry development (Indus), and irrigation level 
(Irrig) mentioned above.  

6. Conclusions and Policy Recommendations 
With the improvement of China’s agricultural market and the continuous improvement of 

regional openness and communication, the flow of agricultural production factors among regions 
is becoming increasingly frequent. Spatial factors have become a non-negligible factor affecting 
the change in China’s agricultural TFP. This paper takes the provincial panel data from 1978 to 
2020 as the research object, uses the fixed effect SFA-Malmquist model to measure each province 
and city’s agricultural TFP, and determines the spatial correlation of China’s agricultural TFP 
through Moran’s I. On this basis, the spatial factors are included in the β-convergence model. The 
spatial convergence characteristics of China’s agricultural TFP are analyzed in different periods 
and regions. Through analysis, the following main conclusions are obtained: 

First, since 1978, the TFP of China’s agriculture has shown a growing trend, but its growth 
rate has gradually slowed over time. This conclusion is consistent with the research results of Chen 
et al., (2008) and Zhou and Zhang (2013). Comparing the growth of agricultural TFP in the central, 
eastern, and western regions, it can be found that the eastern region has the highest TFP growth. In 
contrast, the central and western regions have lower TFP growth. The growth of agricultural TFP 
in China mainly depends on the progress of agricultural technology. Still, the impact of technical 
efficiency on agricultural TFP has gradually strengthened. 

Second, China’s agricultural TFP has significant spatial correlation and spatial convergence 
characteristics. The differences in agricultural TFP in various regions are shrinking over time, and 
the spatial spillover effect significantly shortens the convergence process. By studying the conver-
gence process in different periods, it is found that the convergence speed between 1979 and 1990 
is significantly higher than that between 1991 and 2020. By studying the convergence process in 
different regions, it is found that the convergence speed of China’s agricultural TFP shows a spatial 
distribution pattern of decreasing in the west, east, and middle. 

Practical implications of this research include: 
First, China’s agricultural TFP still has a lot of room for improvement. In the future, the use 

of digital technology, advanced equipment, and other means will continue to improve technical 
efficiency to achieve the growth of China’s agricultural TFP. In recent years, digital technology 
and digital equipment have been gradually applied to the agricultural field, and smart agriculture 
and digital agriculture have also been continuously promoted everywhere, which will effectively 
improve China’s agricultural TFP. In the future, efforts should be made to continuously promote 
digital technology, advanced equipment, and other technologies in the agricultural field.  

Second, while strengthening its own agricultural production, the regional government should 
also take complete account of the advantages of agricultural resources in neighboring regions, 
strengthen cooperation and exchanges between regions, and constantly play the spillover effect of 
regions with high agricultural TFP. This paper has proved that China’s agricultural TFP has signif-
icant spatial agglomeration specificity and spatial effect, which benefits from the flow of produc-
tion factors, technology, personnel, etc., among regions. In the future, based on constantly strength-
ening cooperation and exchange between regions, we should give full play to the role of digital 
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technology, break down barriers between regions, and promote the entire flow of technology, per-
sonnel, and factors to achieve the goal of jointly improving agricultural TFP. 
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Abstract: The increasing global population necessitates increased agricultural production, driving the expan-
sion of agricultural lands and advancement of irrigation farming to supplement the inconsistent and insuffi-
cient rainfall patterns prevalent in many regions. This study aimed to evaluate the potential impacts of the 
expansion of agricultural lands on the streamflow regime of the Thiba River and its impact on the downstream 
users. The study involved comparing the 2004 and 2014 land uses and using the Hydrologic Engineering 
Centre’s Hydrologic Modelling Systems (HEC-GeoHMS and HEC-HMS) for long-term impact simulations. 
The results showed a considerable decline in the streamflow in the dry months compared to the wet months, 
with increasing water abstraction trends from 2007 to 2014. The long-term impact assessment showed an 
average decline in streamflow in the near (2030) and far (2060) future due to land use and population changes 
with minimal impact from the increasing precipitation. Based on these findings, there is a need for proper 
water management and adaptation mechanisms to be put in place to maintain the future water supply from the 
Thiba River. This study’s findings could assist policy and decision-makers in making informed water resource 
management decisions. 

Keywords: agricultural land; irrigation; land use change; streamflow; Thiba River watershed; water 
abstraction 

1. Introduction
Agricultural production has continuously been increasing all over the world, mainly due to 

increased food demand due to the growing population (Food and Agriculture Organization of the 
United Nations [FAO], 2017b; Mateo-Sagasta et al., 2018). This has prompted the expansion of 
agricultural lands and the development of irrigation farming to supplement most areas’ unreliable 
and low rainfall capacities. Agriculture, by far, consumes the highest amount of global world water 
resources, with irrigation accounting for the maximum share of global freshwater withdrawals 
(Siebert et al., 2010). According to Zeng and Cai (2014), approximately 70% of the global fresh-
water withdrawal is used to meet irrigation water requirements. 

In Kenya, just like the rest of the world, agriculture is the leading water consumer accounting 
for over 80% of the available water (Muema et al., 2018). The Kenyan government has initiated 
and promoted various agricultural projects, especially irrigation projects, to increase agricultural 
productivity and enhance food security. Despite the many advantages of irrigation, some adverse 
effects are experienced in irrigated areas. These negative effects include influences on the hydro-
logical regime such as the decline of the base flow and reduction in discharge of the stream caused 
by over-exploitation of water resources or disruption of the natural hydrological regime through 
manmade structures. Additionally, irrigation could result in water erosion caused by inappropriate 
irrigation methods on sloping fields, as well as affect surface and groundwater quality (Fernández-
Cirelli et al., 2009). 

The Mwea Irrigation Scheme (MIS) in the Thiba River watershed, one of Kenya’s largest 
irrigation schemes, has tremendously expanded since 2003, after Kenya’s Vision 2030 plan 
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establishment. The Kenyan government has substantially invested in expanding irrigation to bridge 
the over one million hectares gap required by 2030 to sustain food production (Muema et al., 2018). 
The MIS was established in 1954, with currently over 30,000 acres of gazetted land, of which 
22,000 acres are utilized for paddy rice production and the remainder for settlement, public utilities, 
and subsistence crop cultivation (National Irrigation Authority, 2023). Paddy rice farming has re-
sulted in the expansion of the area surrounding the scheme by approximately 8,600 acres. This new 
area was not planned for and has worsened the situation in terms of water availability for the scheme 
(National Irrigation Authority, 2023). However, there is limited information on actual water ab-
stracted from the river and the potential impacts on streamflow associated with increased commer-
cial agricultural activities. 

The continuous expansion of agricultural land in the study area by the government and indi-
vidual farmers has substantially increased the demand for water from the Thiba River. This demand 
is further exacerbated by the high population growth in the area, putting extra pressure on the al-
ready diminishing water resources. As agricultural productivity rises to meet the growing food de-
mand, the expansion of agricultural lands becomes inevitable, resulting in increased agricultural 
water demand and more strain on the Thiba River. The escalating agricultural water demand, com-
bined with domestic and industrial needs, has resulted in increased water abstractions from the river, 
mainly in the upstream areas with higher population densities and agricultural activities, conse-
quently affecting the downstream water availability (Akoko et al., 2020). Furthermore, water pol-
lution by fertilizers, agrochemicals, and sedimentation exported from the cultivated fields affects 
the river’s water quality, compounding the problem. 

Despite these challenges, there is a lack of studies examining the impact of continuous agri-
cultural land expansion and increased water abstraction on the Thiba River’s flow regime. This 
knowledge gap hinders the development of effective water and land management strategies for 
sustainability and appropriate water resource utilization in the watershed. This study aimed to eval-
uate the streamflow response to agricultural water abstraction and its variability with rainfall for 
the Thiba River watershed. The relationship between streamflow and water abstraction and the land 
use change from 2004 to 2014 was examined. The Hydrologic Engineering Centre’s Hydrologic 
Modelling Systems (HEC-HMS) and its Geospatial extension (HEC-GeoHMS) models were used 
to predict future scenarios based on a practical approach to obtaining long-term land use and climate 
changes in the near future (2030) and in the far future (2060). 

2. Materials and Methods 

2.1. Study Area 
Thiba River watershed (Figure 1a) is located in Kirinyaga and Embu Counties of Kenya at 

latitudes 0° 5’ S and 0° 47’ S, and longitudes 37° 12’E and 37° 32’E and it’s approximately 100 
km North-East of Kenya’s capital city, Nairobi. It covers an estimated area of 1648 km2. The wa-
tershed is located in the upper region of the Tana River basin that is drained by rivers Thiba, 
Nyamindi, Rupigazi, and several other smaller streams. Thiba River receives its waters from a 
higher elevation region in Mount Kenya. The watershed has several agricultural activities upstream 
and downstream, including the MIS, which is well known for paddy rice production in Kenya. The 
MIS covers over 15% of this watershed and consumes the highest irrigation water in the area. Other 
agricultural practices in the watershed that depend on irrigation include cultivating maize and other 
subsistence crops. Thiba River drains its water to the Kaburu hydroelectric dam, one of the seven 
hydro-power stations in the Upper Tana Basin. 
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Figure 1. The Thiba River watershed (a) location (b) topography and (c) soil type maps. 

The climate in the study area ranges from tropical to semi-arid in the upstream to downstream, 
having annual precipitation ranging from 400 mm in the lowland areas to about 2000 mm in the 
highland areas of Mount Kenya. The average annual precipitation in the watershed is 944 mm 
(Akoko et al., 2020). However, lower rainfall patterns are mostly experienced in January, February, 
June, July, and August. The temperatures in the watershed range from 13 °C in the highlands to 
around 30 °C in the lowlands. The hottest months are between January and February, whereas the 
coolest months are between June and July. The mean temperature for the watershed is about 23 °C. 
The elevation of the watershed (Figure 1b) varies spatially, ranging from as high as 5000 m in the 
highland region of Mount Kenya to less than 1000 m in the lowland region. The watershed’s soil 
type (Figure 1c) is mainly black cotton and volcanic soils. The high-elevated regions around Mount 
Kenya are characterized by histosols and nitisols, which are majorly formed from volcanic ash 
deposits. These soils are more productive (agriculturally) than most soils in this watershed despite 
undergoing a series of weathering (FAO et al., 2012). 

The watershed’s predominant land-use activity is commercial flood irrigation of paddy rice 
in the MIS. Some farmers in this watershed also practice horticultural farming, whereas others only 
focus on subsistence farming, such as growing maize and beans (Nyamai et al., 2012). The MIS 
accounted for 88% of rice produced in Kenya between 2005 and 2010 (National Irrigation 
Authority, 2023). The scheme receives over 80% of its water supply from Nyamindi and Thiba 
Rivers, which have a link canal joining them to transfer water from the Nyamidi River to the Thiba 
River. Irrigation water is abstracted from the rivers by gravity action through fixed intake weirs and 
then conveyed and distributed in the scheme via unlined open channel systems. 

 

2.2. Data Acquisition 
The topography data used a 30 m resolution Digital Elevation Map (DEM) for the Thiba River 

watershed (Figure 1b) obtained from the Shuttle Radar Topography Mission (SRTM) elevation 
data was downloaded from the USGS website (United States Geological Survey, 2017). The soil 
data map for the Thiba River watershed (Figure 1c) was downloaded from the Soil and Terrain 
(SOTER) database for the Upper Tana catchment, of which the study area is located at the scale of 
1:250,000 (Batjes, 2011; Dijkshoorn et al., 2011). The classified land use maps for 2004 and 2014 
were downloaded from the FAO’s Africover project database (FAO, 2017a). These land use maps 
are produced from visual interpretation of digitally enhanced Landsat TM images (Bands 4,3,2) 
(Di Gregorio & Latham, 2003; Jansen & Di Gregorio, 2003). The 2009 Kenyan population grid 
map obtained from the International Livestock Research Institute (ILRI) website was used to ex-
tract the study area’s population density grid to project the future population in 2030 and 2060 for 
future analysis.  
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The daily observed rainfall data from 2000 to 2009 obtained from the Kenya Meteorological 
Department (KMD) for three meteorological stations (Embu, Kerugoya, and Castle Forest) within 
the Thiba River watershed was used for the study. Satellite rainfall data for the study period ob-
tained from the global cleaning weather data was used to fill in the missing gaps. The daily observed 
streamflow data for Thiba River from 2000 to 2009 was obtained from the Water Resources Man-
agement Authority (WRMA) in Embu, Kenya, and National Irrigation Authority (NIA) in MIS, 
Kirinyaga County, Kenya. The statistical method of data filling was adopted to fill in the missing 
data. Due to a lack of consistent discharge data from several gauging stations within the watershed, 
only one gauging station at the watershed outlet, River Gauging Station (RGS) 4DD02 (0° 25’ 48’ 
‘S 37° 30’ 22’’E), was used. Past agricultural water abstraction data from MIS was obtained from 
the NIB located at the scheme and the WRMA in Embu. The data from the NIB was compared to 
that from the WRMA to validate it. The available water abstraction data obtained was from 2007 
to 2014. This data was used to establish the abstraction trend due to agricultural activities within 
the watershed. The average monthly potential evapotranspiration data for the Thiba River water-
shed was obtained using the FAO’s Climate and Water balance (CLIMWAT) and Crop Water Re-
quirement (CROPWAT) models for the Embu, Mwea, and Kerugoya stations (FAO, 2015). Then 
the average value for the three stations was used to represent the whole catchment. This potential 
evapotranspiration data was calculated using the Penman-Monteith equation in CROPWAT. The 
potential evapotranspiration ranges from a mean of 1700 mm in the low elevation savannah zone 
to less than 500 mm annually in the summit region with an overall average of 1000 mm (Notter et 
al., 2007). 

2.3. Model Description 
The future impacts of agricultural land expansion on streamflow were analyzed using the 

HEC-GeoHMS coupled with the HEC-HMS model. The model choice was due to the simplicity 
and straightforward approach in its application. It analyzes watershed hydrology in both lumped 
and quasi-distributed forms. HEC-GeoHMS has well-developed data management and visualiza-
tion functions. It also performs spatial analysis when developing distributed hydrologic parameters, 
which saves time and costs and helps in accuracy enhancement (United States Army Corps of 
Engineers [USACE], 2010). 

The HEC-GeoHMS is a free public-domain hydrological modeling software that was designed 
by the United States Army Corps of Engineering (USACE) Hydrologic Engineering Centre (HEC) 
to help and assist engineers, hydrologists, or those with limited GIS experience to be able to visu-
alize spatial information, perform spatial analysis functions, delineate catchments boundaries and 
streams, document watershed characteristics, and prepare hydrological model inputs (USACE, 
2013). It is a physically based, lumped, semi-distributed, and geospatial hydrological tool that was 
developed to process geospatial data and create their input files in GIS. HEC-GeoHMS is used to 
translate GIS spatial data into model files for HEC-HMS. ArcGIS is used for data formatting, pro-
cessing, and coordinate transformation. HEC-GeoHMS uses DEM for catchment delineation and 
preparation of various hydrologic inputs. The interconnection between GIS, HEC-GeoHMS, and 
HEC-HMS is illustrated in Figure 2. 
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Figure 2. Schematic diagram of the relationship between GIS, HEC-GeoHMS, and HEC-HMS. 

The HEC-HMS model divides the watershed into smaller subbasins to simulate the hydrologic 
cycle’s energy and mass flux balances (USACE, 2010). The model runoff simulation components 
include (i) the precipitation specification option, describing the observed (historical) rainfall at a 
given location; (ii) the loss models to estimate the runoff volume based on the precipitation and the 
watershed’s characteristics;(iii) the direct runoff models accounting for the overland flow, storage, 
and energy losses; (iv) the hydrologic routing models accounting for storage and energy flux during 
water movement through the stream channels; (v) models of naturally occurring confluences and 
bifurcations; and (vi) models of water control measures such as diversions and storage facilities. 
The model also contains a distributed runoff model for radar-based precipitation data and a contin-
uous soil moisture accounting model for simulating the watershed’s long-term response to wetting 
and drying 

2.4. Model Set-up and Run 
HEC-GeoHMS 10.2, which is the ArcGIS 10.2 geo-processing extension, and Arc Hydro 

tools were used to generate and process geospatial information of the watershed, such as streamflow 
paths, sub-basins, catchment boundary, elevations, and soil type. The three main data sets that were 
used in this research to model the agricultural expansion impacts on streamflow included the DEM, 
which gave the topographic information of the watershed, land use data, and hydrological data 
(precipitation, streamflow, and evapotranspiration data). These data were then processed and com-
puted using HEC-GeoHMS in ArcGIS 10.2 to generate the parameters required for the HEC-HMS 
model input to generate runoff simulations. 

The HEC-GeoHMS delineated the watershed into 24 subbasins based on their slope charac-
teristics, length of the stream, and number of tributaries joining the main channel. Each of these 24 
subbasins had their parameters, but for this study, their averages were used in the simulation process 
to simplify the processing. The precipitation data from the three rain gauge stations were assigned 
to each of the 24 subbasin depending on the station’s proximity to the centroid of the subbasin. The 
discharge data at the outlet watershed was used to calibrate and validate the model. 

The Soil Conservation Service Curve Number (SCS-CN) method (United States Department 
of Agriculture, 2016) was used to simulate the watershed hydrology so that when estimating the 
future land cover changes due to agricultural expansion, the curve number change would be used 
to represent the changes. The initial abstraction was assumed to be equivalent to 0.2S, where S 
represented the potential maximum retention capacity for the normal antecedent moisture condi-
tions. This retention was adjusted on a 5-day antecedent rainfall (Chow et al., 1988). Once all the 
parameters were set, 1000 simulation runs were made from 1998 to 2009, with the first two years 
set for the model warm-up. 
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2.5. Model Evaluation 
The HEC-HMS model was calibrated (2000–2004) and validated (2005–2009) using the ob-

served daily streamflow data at the watershed outlet. The SCS-CN loss parameters, which included 
the initial abstraction, the percent imperviousness, and the curve number for each subbasin, were 
calculated in HEC-GeoHMS as initial values. The time of concentration, Tc, was calculated by 
obtaining the longest flow path in HEC-GeoHMS (Hoblit & Curtis, 2003). The model calibration 
was done using the model optimization feature, which automatically adjusts various parameters to 
obtain a minimum objective function value that matches the observed values (USACE, 2013). The 
observed actual river flow discharges were input into the time series data manager, after which the 
simulated flows were compared to these actual flows. Several iterations were made, each with 1000 
runs, until the best set of parameter values with the highest efficiency were obtained. The calibrated 
parameters included the runoff loss functions, such as the initial abstractions and CN, transform 
functions, such as the lag time, and routing functions, such as the Muskingum routing parameters. 
The lag time and the Muskingum K value were the most sensitive calibration parameters. The curve 
number values based on the land use data for 2004 and 2014 were kept as initially estimated in 
HEC-GeoHMS. The best model parameters obtained after calibration were used to run the model 
for the land use scenarios in the study area. The model performance was evaluated using the hy-
drologic goodness of fit based on the Nash-Sutcliff Efficiency (NSE), the coefficient of determina-
tion (R2), and the percent bias (PBIAS). Moriasi et al. (2007) recommended NSE > 0.5, R2 > 0.5, 
and PBIAS ±25% for a satisfactory streamflow model performance.  

2.6. Variation in Agricultural Water Abstraction and Streamflow 
The relationship between agricultural water abstraction and streamflow was determined using 

Spearman’s Rank Correlation Test. Correlation methods such as Spearman’s Rank, Kendall Rank, 
and Pearson are commonly used in hydrological studies due to their relative simplicity and high 
validity (Fowler et al., 2007). The correlation analysis was used to complement regression models 
in this study by measuring the strength of the relationship between the dependent and the independ-
ent variables. It, therefore, provided a test of the statistical significance of the data by showing the 
degree to which the two variables changed. The Spearman Rank correlation was chosen since it is 
a non-parametric test that does not make distributional assumptions about the population under 
investigation. The Spearman’s rank coefficient, ρ, was used to measure the linear relationship be-
tween two sets of ranked data (Zar, 1972). The coefficient was calculated using Equation (1): 

( )
( )
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i ix y
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−
= −

−

∑  (1) 

 
Where n is the number of values in each dataset, and  xi and yi represents the two sets of 

variables under consideration in the ith observation. 

2.7. Land Use Change Detection 
Land use data for the Thiba River watershed were obtained for 2004 and 2014 to compare the 

changes in land use within this watershed. The period chosen was ten years apart to show the no-
table changes in land use in the basin due to increased agricultural area. These land uses were 
classified into eight classes: irrigated agriculture, rain-fed agriculture, bare land, forests, urban area, 
shrubs, herbaceous plants, and water. Change detection between the 2004 and 2014 land use maps 
was determined using comparison statistics whereby each land use area percentage was obtained. 

2.8. Long-Term Streamflow Response to Land Use and Climate Changes 
The long-term impacts of agricultural land expansion on streamflow were estimated using 

projected changes in precipitation, land use, and their combinations. The HEC-HMS model has a 
forecasting manager used to input the projected data. The 2014 land use and population data were 
used to project the future land use and water demand, while the projected precipitation estimated 
the future water input.  

Future land use scenarios of in 2030 representing the near future and 2060 representing the 
far future were used to predict future streamflow. A simple but practical approach was adopted to 
develop the future land use data in ArcGIS by overlaying the 2014 land use shapefile with the 
projected population density shapefiles for 2030 and 2060. The population density maps for 2030 
and 2060 were obtained by applying a constant 1.7% population growth rate per annum to the 
existing population density map of 2009, obtained from the current census data available for Kenya 
at that time (Kenya National Bureau of Statistics, 2010). The new population densities were used 
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to predict the future land uses with the assumption that the future land use will be highly dependent 
on the population growth. Assumption was also made that as the population increased, the existing 
forest land would be converted to agriculture land. In that way, the land use maps for 2030 and 
2060 were thus created. It’s important to note that the relationship between population growth and 
land use changes is complex and depends on many other factors, including urbanization and the 
region’s transition stage (Acharya & Nangia, 2004). The HEC-HMS model parameters for pro-
cessing runoff, such as the curve numbers, lag times, and the Muskingum parameters, were then 
recalculated based on the developed future land use scenarios. 

The future precipitation was estimated using the moderate representative concentration path-
way (RCP4.5) with an ensemble of three statistically downscaled and bias-corrected Global Cli-
mate Models (GFDL-ESM2M, HadGEM2-ES, NorESM1-M) for the region (Bentsen et al., 2013; 
Dunne et al., 2012; Jones et al., 2011). The climate data used in this study was downloaded from 
the Water Weather Energy Ecosystem website (www.2w2e.com) at a 0.5⁰ spatial resolution for the 
coordinates range of latitude −1⁰ to 0⁰ south, and longitude 37⁰ to 38⁰ east. Global climate data are 
generally more reliable for temperature than precipitation prediction; however, ensemble ap-
proaches could reduce these uncertainties (Kawasaki et al., 2010). The ensemble of the climate 
model projections shows an average annual temperature rise of 0.4 °C in 2030 and 1.4 °C in 2060; 
and a projected average annual precipitation increase of 2.2% by 2030 and 5.7% by 2060 with 
higher increases in March (4.1% and 12.5%) and October (9.4% and 18.2%) in the two periods. 
These estimations align with the Intergovernmental Panel on Climate Change (IPCC) reports pro-
jections in East Africa for precipitation that predict no change to 2.5% in the next decade and be-
tween 6% to 10% increase by 2100 (Kiem et al., 2008; Meehl et al., 2007). 

3. Results and Discussions 

3.1. Model Sensitivity Analysis, Calibration, and Validation 
The model evaluation was preceded by the sensitivity analysis of the most influential param-

eters in the watershed. A global sensitivity test was conducted on streamflow parameters obtained 
from the HEC-GeoHMS and the best parameters used in the HEC-HMS for the model simulation. 
The HEC-HMS model has an automatic calibration package that can estimate specific model pa-
rameters based on their initial conditions. The sensitive parameters were then used to calibrate the 
model. The SCS-CN and the Muskingum routing parameters were the most sensitive parameters. 
The curve number is an essential hydrology parameter as it directly affects the rates of surface 
runoff and infiltration in the watershed. The SCS-CN value is influenced by the watershed’s land 
use, soil characteristics, and the initial soil moisture conditions (Mishra et al., 2012; Rallison & 
Miller, 1982). A higher SCS-CN value results in higher surface runoff than infiltration, while a 
lower value results in more infiltration than surface runoff. The Muskingum K value determines 
the average routing time of runoff from each reach. It is based on a simple finite difference approx-
imation of the continuity equation and considers the storage characteristics of the channel reach 
(USACE, 2010). The Muskingum parameter also has a dimensionless weight parameter, X, which 
determines the relative weighting of the inflow and outflow in the storage calculation. The value of 
X ranged from 0 to 0.5, with 0.2 being the best value used to adjust the behavior of the runoff 
movement through each reach. If X is set to 0, the model represents a linear reservoir with storage 
solely determined by the outflow rate and K value. If X is set to 0.5, equal weight is given to inflow 
and outflow, resulting in a uniformly progressive wave that does not attenuate as it moves through 
the reach (USACE, 2010). 

The model adequately captured the monthly streamflow simulations’ magnitude and temporal 
dynamics, replicating most high and low flows during calibration and validation, as shown in Fig-
ure 3. The model produced good performance evaluation results with NSE and R2 values of 0.66 
and 0.68, respectively, during calibration, and 0.61 and 0.65, during validation. The simulations 
generally underestimated the observations with PBIAS values of 0.18 and 0.14 during calibration 
and validation, respectively, which is considered acceptable considering the numerous uncertainties 
associated with modeling. The model’s uncertainty could be due to errors in the input data (e.g., 
meteorological data), measured data errors (e.g., streamflow observations), and model simplifica-
tions (Meaurio et al., 2015; Rostamian et al., 2008; Tolson & Shoemaker, 2007). The findings from 
this study were comparable to those obtained by Yasin et al. (2015), in which they modeled hill 
torrents in Pakistan using HEC-GeoHMS and HEC-HMS and found an acceptable NSE value of 
0.54. From these findings, the model was considered suitable for adoption in the watershed.  
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Figure 3. Comparison of monthly observed and simulated streamflow hydrographs during calibration (2000 
to 2004) and validation (2005—2009) at the outlet of the Thiba River watershed. 

3.2. Agricultural Water Abstraction and Streamflow Analysis 
The analysis of the data provided by NIB and WRMA showed an increasing trajectory of 

water abstraction from the Thiba River between 2007 and 2014, as shown in Figure 4. The highest 
abstraction of about 9.3 million m3 happened in 2014, whereas the lowest of about 7.2 million m3 
occurred in 2009. This increase in abstraction in 2014 could be attributed to reduced rainfall due to 
the drought experienced in Eastern Africa that year. Conversely, water abstraction in 2009 was 
lower due to high rainfall in that year, thus reducing the dependency on the river water. The sea-
sonal distribution of water abstraction pattern indicated higher abstractions in the dry months of 
January to February and June to October, coinciding with high irrigation water demand. The 
changes in the flow regime of Thiba River could be attributed to various factors, with water ab-
straction considered one of the primary drivers. The largest proportion of water abstraction was due 
to increased requirements for irrigation, occasioned by the increased land area under irrigation, 
especially within the MIS. These findings are consistent with previous studies by Ngigi et al. (2007), 
who observed similar agricultural water abstraction patterns in the Ewaso Ng’iro River. 
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Figure 4. Annual water abstraction trend from the Thiba River between 2007 to 2014. 

The correlation between streamflow and agricultural water abstraction from 2007 to 2014 
gave a highly significant and strong inverse relationship with a decreasing trend, as shown in Figure 
5a. Water abstraction analysis revealed that about 0.23 m3 s-1 (approximately 20000 m3 day-1) was 
abstracted during the dry seasons, whereas 0.06 m3 s-1 (approximately 5000 m3 day-1) of the river’s 
flow was abstracted during the wet seasons, as demonstrated in Figure 5b. This implies that about 
35% of the river’s flow during dry season and only 3% of the flow during wet season flow were 
abstracted from the Thiba River. These findings compare to Ngigi et al. (2007) findings that irriga-
tion water abstraction is a key contributor to streamflow reduction in dry spells, exacerbated by 
unregulated and illegal water abstraction practices. 

 
Figure 5. (a) Correlation between agricultural water abstraction and streamflow (b) comparison of monthly 
average water abstraction and rainfall trends from 2007 to 2014.  
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The findings from the Thiba River are consistent with previous research across geographical 
contexts. For instance, in the Ewaso Ng’iro River, Ngigi et al. (2007) observed similar agricultural 
water abstraction patterns with about 62% of dry season flow and 43% of wet season flow being 
abstracted from the river. Similarly, in the Naro Moru River, Aeschbacher et al. (2005) reported a 
30% streamflow decline between 1960 and 2005 attributed to water abstraction, thus demonstrating 
the long-term and cumulative nature of water abstraction’s influence on river regime. The con-
sistency and reliability of the relationship between irrigation water abstraction and streamflow fluc-
tuations in the Thiba River is further validated by the similarities between our findings and those 
of other studies. These findings emphasize the need to strike a balance between human activities 
like agriculture and adopting more sustainable measures to manage our water supplies. 

3.3. Land Use Change Analysis 
The Thiba River watershed experienced substantial spatial land use changes, within the course 

of a decade, from 2004 to 2014. The major land use activities include agriculture (> 60%) and forest 
(>30%) accounting for almost 95% of the watershed area. Land uses in the watershed were classi-
fied into eight categories, as illustrated in Figure 6. In the 2014 land use map (Figure 6b), the major 
land use activity was rainfed agricultural farming (50.5%), which included crops such as maize, 
coffee, and tea. Approximately 15% of the watershed was used for irrigated agriculture, with paddy 
rice farming in MIS being predominant. Horticultural crops also form part of the irrigated crops. 
The forested region around Mount Kenya, which covers almost a third of the watershed, witnessed 
a decrease in coverage by 6.2% from 2004 to 2014 (Figure 7). This decline in the forested area 
could be attributed to multiple factors, including deforestation to create room for agricultural ac-
tivities, residential areas expansion to accommodate more people, and to a lesser extent, population 
growth driving the demand for timber and fuel. Additionally, the conversion of forest land to agri-
cultural use may have also been influenced by the expansion of rainfed and irrigated agricultural 
land. Within the same period, the rainfed agricultural land increased by almost 5%, whereas the 
irrigated agricultural increased by only 1%. 

 

 
Figure 6. Thiba River watershed spatial distribution of land use maps for (a) 2004 and (b) 2014. 
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Figure 7. Land use change analysis from 2004 to 2014 in the Thiba River watershed. 

The conversion of forests to give way to agricultural land since 2004 could be attributed to 
the increased population growth within the Upper Tana catchment’s rural areas, which encom-
passes the Thiba River watershed. This population surge has increased the demand for agricultural 
lands, particularly because most of these communities heavily rely on agriculture for sustenance. 
Therefore, some of the forested areas could have been converted to small-scale agricultural plots, 
that predominantly depend on rainfall for food production.  

It is worth noting that the adoption of unsustainable agricultural practices in many of these 
areas has exacerbated environmental challenges such as erosion and sedimentation of the rivers and 
streams. According to Kitheka and Ongwenyi (2002), some of these unstainable practices, such as 
continuous tillage, create large bare land, potentially contributing to increased runoff volume. In a 
related study by Ngigi et al. (2007) in the Ewaso Ng’iro river basin, it was observed that agricultural 
intensification had increased to unprecedented levels due to high population growth in the basin. 
The study also pointed out that land use changes resulting from population pressures had adverse 
effects on river flows, environmental degradation, and decreased agricultural production.  

To further emphasize the relevance of these findings, it is noteworthy that similar patterns 
have been observed in other regions. For instance, a study by Kirui (2008) in the Upper Molo 
catchment found that the area covered by forested land reduced by 48% between 1986 to 2001 due 
to encroachment by the local farmers in search of more agricultural land. This study likewise con-
cluded that the high demand for agricultural land in the area resulted from increased population, 
mirroring the situation in the Thiba River watershed. 

Based on these findings and the consistency with previous studies, it is apparent that the land 
use changes observed in the Thiba River watershed are part of a larger trend influenced by popula-
tion growth and the subsequent demand for more agricultural land to produce more food. However, 
the adoption of unsustainable agricultural practices exposes the need for targeted interventions to 
address environmental concerns and promote sustainable land use practices in these areas. 

3.4. Long-Term Impact Scenario Analysis 
In generating the land use scenario, the 2014 land use map was reclassified into four categories 

of agricultural land, forest, residential area, and water and overlaid with the projected population 
density maps to result in new land use areas, as shown in Figure 8. This categorization provided a 
foundation for assessing the future impacts of land use changes and population growth on water 
resources in the Thiba River basin. The population change analysis showed that the agricultural 
water demand would increase from 9.3 million m3 in 2014 (baseline scenario) to 11.6 million m3 
in 2030 (near future) and 16 million m3 in 2060 (far future), representing a 24% and 72% increase 
in 2030 and 2060 agricultural water demand, respectively. These findings highlight the urgent need 
for adoption of efficient irrigation practices and alternative water sources to meet this projected 
increase in agricultural water demand. Furthermore, it would be expected that the water demand 
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for other uses would also increase as the population increased, and this would exert more pressure 
on the Thiba River if no new water sources were developed. In this scenario, projected land use 
was assumed to be only affected by population change, which would affect the future agricultural 
water demand. However, it is imperative to recognize that other factors beyond population growth, 
such as future economic growth, climate change trends, and inter-seasonal variability, would 
greatly influence the amount of agricultural water required, especially during the dry seasons. As 
the region’s economy and living standards continue to improve, higher water consumption would 
be for various purposes. 

 
Figure 8. The projected percent land use change in 2030 and 2060 compared to 2014 (baseline). 

The land use change scenario findings showed that streamflow was reduced by 18% in 2030 
and 52% in 2060 compared to the baseline. This streamflow decrease could be attributed to in-
creased water demand due to land use changes and population increase. The increase in residential 
area would increase the SCS-CN value, thus increasing the surface runoff, which could have also 
led to the increased streamflow. However, the increase in residential areas was negligible compared 
to the increase in agricultural water demand. Reduction of the forest land could have also contrib-
uted to an increase in streamflow since there was an increase in the bare land created for agricultural 
purposes, thus increasing runoff. However, this was also outdone by the high levels of water ab-
straction from the river. 

The precipitation change scenario showed an annual streamflow increase of 3% and 6% in 
2030 and 2060, respectively, resulting from climate change. This could be attributed to increased 
2.2% and 5.7% precipitation in 2030 and 2060, respectively. According to previous IPCC reports 
(Meehl et al., 2007), the East African region is projected to experience increased precipitation and 
temperature; however, the impact on streamflow would be negligible due to the high evapotranspi-
ration rates due to the temperature increase compared to the slight precipitation increase. Similar 
increasing streamflow patterns caused by climate change have also been observed in other parts of 
Kenya. For instance, Githui et al. (2009) reported a 2.4% to 23.2% increase in streamflow as a 
result of a 6% to 11.5% rise in precipitation in the 2020s and 2050s in the Nzoia catchment of the 
Lake Victoria basin in western Kenya. Similarly, Musau et al. (2015) observed an average annual 
streamflow increase of up to 4.8% in the 2020s and 17.2% in the 2050s in the Mount Elgon water-
shed using the B1 scenario, albeit reporting high uncertainties.  

The final scenario combined land use and precipitation change had a comparable trend to the 
land use change scenario. Streamflow declined by 15% and 48% in 2030 and 2060, respectively, 
under this scenario. This could be attributed to the increased water demand in the land use scenario 
compared to the slight precipitation increase. Despite increasing precipitation, an increase in water 
demand, mainly agricultural water demand due to population increase, has a higher effect on the 
stream flow since there would be increased abstractions from the river. The findings were consistent 
with those obtained by Kawasaki et al. (2010), who reported that population growth and land de-
velopment had a greater impact on streamflow change than precipitation in the 50 years studied. 
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The results of the streamflow response in each of the scenarios discussed above are as shown in 
Figure 9. 

 
Figure 9. Projected annual streamflow change in the Thiba River watershed for changes in land use, precipi-
tation, and their combination in 2030 and 2060 compared to the baseline (2014). 

The projected changes in streamflow and agricultural water demand demonstrate the need for 
adaptive water resource management. To effectively address these challenges, a multifaceted ap-
proach is needed, focusing on optimizing water allocation, investing in efficient irrigation methods, 
and exploring alternative water sources (Pulighe et al., 2021; Rodrigues et al., 2023). This requires 
collaborative initiatives involving a diverse group of stakeholders, including practitioners, experts, 
researchers, policy-, and decision-makers.  

The substantial increase in agricultural water demand necessitates prompt action. Implement-
ing sustainable agricultural practices, promoting crop diversification, and embracing water-effi-
cient irrigation methods like drip irrigation and precision farming, are vital to mitigating the poten-
tial impacts on crop yields and food security (Oduor et al., 2023). Conducting a comprehensive 
assessment of vulnerable crops in the study area can help guide targeted interventions, ultimately 
enhancing resilience and sustainability in the face of evolving environmental conditions. 

It is important to recognize that reduced agricultural productivity due to water scarcity may 
have far-reaching socioeconomic consequences. Therefore, policymakers need to take proactive 
steps to address the potential economic consequences, such as reduced livelihood opportunities, 
increased migration, and increased dependence on external food sources. Diversifying income 
sources and promoting alternative livelihoods can enhance resilience. Furthermore, it is imperative 
to build climate resilience by ensuring that communities and agriculture adapt to water scarcity and 
climate variability. To facilitate this adaptation, outreach programs such as education and aware-
ness campaigns could be instrumental in fostering sustainable water use practices among local 
stakeholders. 

4. Conclusions 
This study evaluated the long-term streamflow response to changes in agricultural land in the 

Thiba River watershed. The decrease in streamflow during dry months and the strong correlation 
with agricultural water abstraction highlight the need for long-term, sustainable water resource 
management strategies. The results emphasize the urgent need for proactive policies and adaptive 
measures that balance agricultural needs with ecosystem conservation to ensure consistent and 
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reliable water supply in the future. The projected decline in future streamflow, exacerbated by pop-
ulation growth and agricultural expansion, requires a paradigm shift in water management practices.   

Despite the model simulations providing valuable insights, it is important to acknowledge the 
inherent uncertainties associated with any modeling approach. The scope of this study was primar-
ily on streamflow dynamics, leaving avenues for future research to explore water quality, ecological 
impacts, and alternative land management scenarios. 

Based on the findings, it would be prudent to implement sustainable water resource manage-
ment measures such as efficient irrigation techniques, crop selection optimization, and enforcement 
of water use regulations to mitigate excessive water abstraction. Investing in water-related infra-
structure and promoting public awareness regarding responsible water consumption could also con-
tribute to long-term water security.  

This research contributes to the state-of-the-art of the complex relationship between land use, 
hydrology, and water availability. The findings could be useful to water professionals and managers 
in developing a robust integrated water and land management system, as well as guiding policies 
and decisions on river water resource management. The methodology and outcomes of this study 
can be extended to other regions facing similar agricultural and land use management challenges. 
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An Atlas of Desertification for Spain 
Jaime Martínez-Valderrama 
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jaimonides@eeza.csic.es 

1. The Lack of Desertification Maps
As occasions like Desertification and Drought Day draw near or news headlines highlight new 

temperature records, a renewed interest on desertification is raised. Alongside this, the media often 
raises customary inquiries. Among the initial queries is the one concerning the scope of the issue. 
They presume that we experts know all this, and that we have a perfectly quantified variable that 
measures desertification. They assume that the dense network of satellites allows us to monitor the 
problem almost instantaneously, and that it is enough to take a look at this map, and issue a brief 
report: in this province, there is this percentage of desertification, this percentage is severe and this 
percentage is medium, and this percentage is severe. 

We are far from it. We don’t really have an answer to something basic, which is the state of 
desertification. There is a disparate estimation of the global extent of desertified lands provided to 
date, ranging between 4–74% of drylands (Safriel, 2007). The extent of desertification is an elusive 
figure, often presented as partial information even in official documents. For example, the Inter-
governmental Science-Policy Platform on Biodiversity and Ecosystem Services (2018) equates the 
problem to population affected (from 2.7 billion in 2010 to 4 billion in 2050) rather than to amount 
of land. The Intergovernmental Panel on Climate Change (Mirzabaev et al. 2019) gives a precise 
figure: “9.2% of drylands (±0.5%) experienced declines in biomass productivity” during 1980–
2000, which is based on studies that estimate a 24-29% decline in global biomass (Le et al., 2016). 
Similarly, the United Nations Convention to Combat Desertification (2022) estimates that 20% of 
global land is degraded to some extent.  

This pattern holds true at both the national and regional levels. In the case of Spain, outdated 
statistics have persisted, such as the assertion that 20% of its land area is undergoing degradation 
processes. This statistic originates from a study conducted for the period of 2000–2010, which 
evaluated land condition considering the rain use efficiency paradigm (Sanjuán et al., 2014). How-
ever, the assessment of desertification must include more factors, such as the degradation of 
groundwater bodies (which in the above map are revealed as positive anomalies), a serious problem 
in the drylands of Spain.  

Alongside this map, which reflects the current state, there is another map of desertification 
risk, constructed using the Mediterranean Desertification and Land Use methodology (European 
Commission, 1999). Its validity has been questioned due to its lack of statistical and conceptual 
rigor. Specifically, this map is a simple algebraic operation to add up the effect of four factors 
(aridity, erosion, use of aquifers and area burnt by forest fires), excluding the possibility of synergy 
between them. For example, in a territory with higher aridity, and therefore lower productivity rates, 
soil loss has a greater impact than in less arid areas, since soil formation rates are lower. These 
types of interactions are not considered in the methodology used in the Spanish National Action 
Plan against Desertification, which also ignores the causes of the problem. Moreover, the factors 
are weighed subjectively. For example, if soil erosion estimated by the Revised Universal Soil Loss 
Equation is between 12 and 25 t ha-1 yr-1, the weight of the erosion factor is 2, but nothing justifies 
these thresholds. 

 The lack of desertification maps, not only in Spain, but on a global scale, was certified by 
the latest World Atlas of Desertification (WAD) (Cherlet et al., 2018), which warns on the first 
page: “Although ‘desertification’ remains in the title, [...] deterministic maps on global land deg-
radation are not presented.” The rationale behind this gap in knowledge is multifaceted and arises 
from the inherent intricacies of desertification, encompassing a spectrum of degradation processes. 
These span from erosion and biodiversity loss to the overexploitation of water resources, and in-
clude economic degradation. Consequently, the pursuit of an indicator capable of harmonizing this 
diverse array of variables has encountered obstacles. Another contributing factor is the pronounced 
level of subjectivity in desertification assessment. Many experts have classified landscapes 
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characterized by sparse, non-lush vegetation—typical of arid regions and exhibiting ochre hues—
as areas undergoing degradation. 

2. How to Fill this Critical Gap 
Given the impossibility of mapping, the WAD proposes Convergence of Evidence (CE) to 

detect desertification processes at an early stage. CE emphasizes the importance of the context of 
each site and considers a series of biophysical and socio-economic variables to portray the potential 
threat of desertification. Without being an original approach—in 1998 the Surveillance System for 
Assessing and Monitoring of Desertification project (http://www.eeza.csic.es/surmodes/) already 
used this idea to identify the “desertification landscapes” of Spain (Martínez-Valderrama et al., 
2022)—the idea is a fabulous diagnostic tool, as it makes it possible to anticipate degradation before 
it leads to irreversible deterioration of the socio-ecosystem. 

However, the CE raises doubts. It does not provide a global framework in which to compare 
desertification states in different places, precisely because it prioritizes the local conceptual com-
ponent, i.e., by considering that each context provides an idea of what desertification is. Moreover, 
it leaves empty all those maps that are constantly asked about. The problem with not having a map 
is that any map will do. Media questions are one thing, but the needs of the administration in deci-
sion-making are another, and these often come at a time that is not conducive to reflection. Indeed, 
when politicians become interested in desertification (or fires, or droughts, or plastic pollution) it 
is often too late, and there are very short deadlines to respond to very complex problems. In this 
context, it is not surprising that, for example, aridity maps are used to represent desertification. This 
is a major error, as aridity maps represent only where desertification can potentially occur.  

It is not an option, if the problem is to be tackled with guarantees, to lack desertification maps. 
An example of this, in the case of Spain, is the express request for a desertification map by the 
Spanish Government in the latest National Strategy to Combat Desertification. Our project aims to 
address the challenge through the use of artificial intelligence algorithms. To do so, all available 
geospatial information on desertification (e.g., aridity index, soil organic carbon, land use changes, 
state of groundwater bodies, per capita income, etc.) will be gathered, and cases of desertification 
in Spain will be identified. We then train our prototype with these cases, relating them to the 
mapped variables under different climate change scenarios. From these relationships we will be 
able to detect, through the various maps that the project will generate, more cases of desertification 
that may initially go unnoticed or that have not been identified to date. In order to identify the main 
predictors and their importance in desertification in Spain, we will carry out a Random Forest per-
mutation analysis (Breiman, 2001). Thus, in addition to having identified the places with desertifi-
cation, we will have an idea of its causes, which will guide the design of solutions. 

 Our aim is to provide decision-makers with a useful tool for diagnosing desertification, which 
is the first step towards tackling the problem with guarantees. Only by knowing where the problems 
occur and with what intensity, will it be possible to start designing measures to reverse the problem 
(when it is already too advanced) or to redirect land uses that are beginning to cause land degrada-
tion. 
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