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Article 

The Impact of Typhoons on Agricultural Productivity—Evidence 
from Coastal Regions of China 
Weicong Ren 

School of Economics and Management, Zhaoqing University, Zhaoqing 526061, China; renweicong@zqu.edu.cn 

Abstract: The impact of natural disasters on agricultural production has garnered global attention. This study 
takes typhoons as an example, employing their movement paths to construct a difference-in-differences (DID) 
model and combining survey data from Rural Fixed Observation Spots to estimate changes in agricultural 
productivity from coastal regions of China, including Guangdong, Fujian, and Zhejiang provinces. This study 
finds that typhoons significantly deteriorate local agricultural productivity. Specifically, the planting income 
per mu and planting income per capita of rural households have decreased by 11% and 14%, respectively, 
while agricultural total factor productivity (TFP) has dropped by 3.7%. The decline in productivity can be 
attributed to two channels. Firstly, typhoons directly damage crops, leading to reduced total output. Secondly, 
in anticipation of typhoons, rural households increase asset input but reduce labor input and intermediate goods, 
resulting in the misallocation of agricultural inputs, which further diminishes productivity. The cost-benefit 
analysis indicates that to compensate for 20% of the negative impact of typhoons on agricultural productivity, 
local financial funds ranging from 3.4 million to 20 million yuan are required. Therefore, it is imperative for 
the Chinese government to strengthen the natural disaster warning system and improve farmland water con-
servancy infrastructure to mitigate the misallocation of agricultural inputs by rural households. 

Keywords: agricultural productivity; agricultural inputs allocation; natural disasters; typhoons 

1. Introduction
Agricultural productivity is a fundamental indicator of the quality of agricultural development. 

Improving agricultural productivity not only enhances agricultural competitiveness but also signif-
icantly promotes economic structural transformation (Cao & Birchenall, 2013; Gollin et al., 2021; 
Lewis, 1954; Ranis & Fei, 1961). According to the classic Cobb-Douglas production function, 
agricultural productivity is influenced by asset inputs (Cui, 2023), labor inputs (Shi, 2018), land 
use (Chari et al., 2021), technological progress (Kantor & Whalley, 2019), and institutional changes 
(Lin, 1992). In addition to these traditional factors, numerous studies have identified natural disas-
ters, such as extreme temperatures, floods, and droughts induced by climate change, as significant 
disruptors of agricultural production, leading to severe losses in productivity (Burke & Emerick, 
2016; Chen & Gong, 2021; Chen & Chen, 2018; Lesk et al., 2016). 

Natural disasters exacerbated by climate change are becoming increasingly frequent. Ty-
phoons are among the natural disasters with the highest frequency and most severe global impacts. 
Previous research has documented their adverse effects on economic growth (Cavallo et al., 2013; 
Deryugina et al., 2018; Elliott et al., 2015; Strobl, 2011), industrial production (Elliott et al., 2019), 
residents’ wealth (Kahn, 2005; Pugatch, 2019), and education levels (Lin et al., 2021). In the con-
text of agricultural production, typhoons disrupt the supply of agricultural products and induce 
abnormal fluctuations in market prices (Bao et al., 2023; Gagnon & López-Salido, 2020; Kinnucan, 
2016). 

China’s coastal areas, particularly those located on the northwest side of the Pacific, are fre-
quently affected by typhoons (Lin et al., 2021). Typhoons can significantly impact agricultural 
productivity through two primary mechanisms. Firstly, the strong winds and heavy rainfall associ-
ated with typhoons can cause crop lodging and farmland flooding, directly damaging crops and 
reducing production efficiency. Secondly, rural households often adjust their production inputs to 
mitigate the impact of typhoons, leading to input distortions that indirectly diminish agricultural 
productivity. This study constructs a difference-in-differences (DID) model to evaluate the impact 
of typhoons on agricultural productivity. The findings suggest that typhoons notably impair local 
agricultural productivity. Specifically, planting income per mu and planting income per capita of 
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rural households have decreased by 11% and 14%, respectively, while agricultural total factor 
productivity (TFP) has declined by 3.7%. Moreover, the impact of typhoons on agricultural produc-
tivity varies significantly with the geographical characteristics of the village, including the organi-
zational capacity represented by the density of village cadres and the land transfer ratio. Mechanism 
analysis reveals that both the direct destruction of crops by typhoons and the distortion of input 
allocation by rural households are the main channels of deteriorating agricultural productivity. 

This study contributes to literature in several aspects. Firstly, by utilizing the exogeneity of 
typhoon paths, it effectively reduces the estimation bias of natural disasters on agricultural produc-
tivity. This allows for the precise delineation of treatment and control groups, enabling accurate 
estimation of the impact on agricultural productivity (Angrist & Pischke, 2009). This methodology 
not only enhances our understanding of the specific effects of typhoons but also provides insights 
into the broader implications of related natural disasters, such as earthquakes, droughts, and floods. 
Secondly, this study confirms the sudden impact of environmental changes on agricultural produc-
tivity. While Burke & Emerick (2016) and Chen & Gong (2021) have focused on the long-term 
effects of climate change on agricultural farming adaptability and productivity, this study specifi-
cally investigates the short-term impact of typhoons. It emphasizes the inadequate coping mecha-
nisms of farmers and underscores the importance of government intervention. Thirdly, the mecha-
nism analysis demonstrates how typhoons alter rural households’ behavior and, consequently, re-
duce agricultural productivity. While numerous studies have assessed the impact of natural disas-
ters on agricultural production (Chen & Chen, 2018; Lesk et al., 2016), few have delved into the 
intermediate mechanisms driving farmers’ responses. By deeply exploring the behavioral mecha-
nisms of farmers when facing typhoon impacts, this study provides valuable insights into how gov-
ernment agencies can guide farmers to mitigate the adverse effects of natural disasters and imple-
ment effective agricultural production. 

2. Research Background and Methods 

2.1. Research Background: Typhoons in Coastal Regions of China 
China frequently experiences typhoons, with an average of 7.4 typhoons of magnitude 8 or 

above on the Beaufort scale annually (Lin et al., 2021). The main affected areas are coastal prov-
inces such as Guangdong, Fujian, Hainan, Zhejiang, and Guangxi. From 1993 to 2006, the average 
annual economic losses from typhoons in Zhejiang reached 7.73 billion yuan, while Fujian, Guang-
dong, and Hainan experienced losses of 3.14 billion, 2.06 billion, and 1.11 billion yuan, respec-
tively (Zhang et al., 2009). 

During the period of our study, typhoons had a significant impact on agricultural production 
in China’s coastal areas for several reasons. Firstly, the typhoon warning and monitoring system 
was not fully established until the 1980s (Wen, 2004). Secondly, the time and location of typhoon 
landfall are difficult to predict (Lin et al., 2021), making it difficult for local farmers to make cor-
responding adjustments to agricultural production.  Thirdly, many people in these areas make their 
livings from agriculture, which is particularly vulnerable to typhoons (Xu et al., 2005). Finally, 
inadequate infrastructure exacerbates the impact of typhoons. Prior to the 1980s, many dams in 
China were poorly constructed and unable to effectively protect against flooding caused by ty-
phoons. (Jia-bi & Dong-ya, 2009). These factors pose serious threats to agricultural production in 
coastal regions. 

This study proposes the following mechanisms to explain how typhoons lead to significant 
declines in agricultural productivity. First, the direct mechanism involves the destruction of crops 
due to the strong winds and heavy rains associated with typhoons, resulting in immediate agricul-
tural losses. Second, the indirect mechanism involves pre-landfall adjustments by rural households 
aimed at mitigating typhoon damage. These adjustments often disrupt optimal decision-making 
regarding the allocation of agricultural inputs, leading to misallocation and, consequently, a decline 
in agricultural productivity. Adamopoulos et al. (2022) attribute the stagnation in China’s agricul-
tural productivity from 1993 to 2002 to the misallocation of agricultural inputs due to land policy 
constraints. Similarly, Chen and Gong (2021) show that the ability of rural households to adjust 
production inputs flexibly significantly reduces the negative impact of extreme temperatures on 
agricultural productivity. These studies highlight the importance of input allocation in determining 
agricultural productivity, making the “typhoon shock—factor allocation distortion—agricultural 
productivity decline” mechanism a plausible explanation. 

Figure 1 (a) illustrates the movement paths of typhoons in the Northwest Pacific from 1986 
to 2015, highlighting the frequency with which China’s coastal areas were affected. I obtained 
agricultural production data for the coastal provinces of Guangdong, Fujian, and Zhejiang from the 
Rural Fixed Observation Spot of the Chinese Ministry of Agriculture. Figure 1 (b) shows the inter-
section area of the typhoon track and the sample counties; the shaded area indicates a higher degree 
of impact and the non-shaded area indicates a lower degree of impact. Since typhoon movement is 
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a natural phenomenon, I categorize the shaded areas as the treatment group and the unshaded areas 
as the control group. Then I compare the agricultural productivity gap between these two groups 
before and after the typhoons’ landfall to accurately estimate the impact of typhoons. 

 

  

(a) (b) 
Figure 1: (a) Typhoons landed in China (1986−2015); (b) Typhoons landed in coastal counties (2008). 

In addition, Figures 2 (a) and (b) illustrate the average maximum wind speed and average 
rainfall in sample counties, distinguishing between areas affected by typhoons and those that are 
not. On average, the annual maximum wind speed in non-typhoon areas is generally below 14 
meters per second, whereas it can reach 16 meters per second or even 20 meters per second in 
typhoon-affected areas. Such increases in wind speed can easily cause crops to fall or even be 
destroyed. The average annual rainfall in typhoon-affected areas is significantly higher than in non-
typhoon areas. The heavy rains not only directly damage the soil where crops grow but also fre-
quently trigger floods that can completely destroy farmland. To mitigate the negative impacts of 
typhoons and reduce agricultural losses, rural households often take temporary measures such as 
dredging ditches, reinforcing crops, and expediting harvests before the typhoon makes landfall. 
These remedial actions can have a notable impact on the allocation of agricultural inputs and pro-
duction, leading to deviations in agricultural productivity from normal status. 

  

(a) (b) 
Figure 2: (a) Typhoon and average wind speed; (b) Typhoon and average rainfall. 

2.2. Model Setting and Data Description 
I employ a standard two-way fixed effects (TWFE) regression model to estimate the influence 

of typhoons on agricultural productivity: 

ict ct i t ictY Typhoonα β γ θ δ ε= + + + + +X            (1) 

Here, 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  represents the agricultural productivity of rural households 𝑖𝑖 in region 𝑐𝑐 during 
year 𝑡𝑡 , measured by crop production. 𝑇𝑇𝑦𝑦𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐  is an indicator variable that takes the value of 
1 if region 𝑐𝑐 was affected by a typhoon in year 𝑡𝑡, and otherwise 0. As shown in Figure 1 (b), if 
the area intersects with the typhoon track in a given year, 𝑇𝑇𝑦𝑦𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐  equals 1; otherwise, it equals 
0. This setting is similar to Bao et al. (2023). 𝐗𝐗 denotes the control variables, including the fixed 
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assets (FAS) of rural households, labor working days (WDY) in planting, land size (LSZ), and in-
termediate inputs (INP) in planting. Except for 𝑇𝑇𝑦𝑦𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐 , which is a dummy variable, other var-
iables are in logarithmic form. 𝜃𝜃𝑖𝑖 represents the rural household fixed effect, 𝛿𝛿𝑡𝑡 is the year fixed 
effect, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the random disturbance term. 

The data sources are as follows. First, agricultural productivity indicators are from the Rural 
Fixed Observation Spots sample survey conducted by the Agricultural Economic Research Center 
of the Ministry of Agriculture and Rural Affairs of China. This survey covers 11 provinces, includ-
ing Shanxi, Jilin, Zhejiang, Fujian, Jiangxi, Henan, Hubei, Hunan, Guangdong, Sichuan, and Gansu, 
providing a comprehensive sample distribution. Coastal areas including Guangdong, Fujian, and 
Zhejiang are selected as the study samples. Second, typhoon data is from the China Meteorological 
Administration’s Tropical Cyclone Data Center. This dataset includes the position and intensity of 
tropical cyclones in the Northwest Pacific (including the South China Sea, north of the equator, and 
west of longitude 180°E) every 6 hours since 1949. By using the typhoon’s longitude and latitude, 
I adopt ArcGIS software to map the typhoon paths and identify the affected areas within the sample 
data. 

Table 1. Descriptive statistics. 

 Variables Variable description Count Mean SD Min Max 
dependent Ln(NINC_PM) NINC_PM = net income of planting/sown area 28490 5.68 1.23 0 9.01 
variables Ln(NINC_PC) NINC_PC = net income of planting/labor force 28490 5.84 1.30 0 9.87 

 Ln(TFP) total factor productivity of planting 28490 2.76 0.86 1.26 7.29 
 Typhoon landed = 1；otherwise = 0 28490 0.17 0.37 0 1 

independent Max_wind m/s 28490 13.36 3.43 8.08 30.95 
variables Ave_rain mm 28490 1.58 0.31 1.04 2.49 

 Ln(AFE) agricultural fiscal expenditure (10 million yuan) 11517 0.89 0.54 0.24 2.70 
baseline Ln(FAS) original value of productive fixed assets(yuan) 28490 6.97 1.50 3.71 11.67 
control Ln(WDY) labor input of planting (day) 28490 1.36 0.50 0.26 3 

variables Ln(LSZ) cultivated land area (mu) 28490 4.87 0.77 1.10 5.88 
 Ln(INP) operating expenses of planting (yuan) 28490 6.56 1.21 3.43 12.72 
 Ln(VPOP) population size 28262 7.70 0.75 6.16 8.90 

village Log(VLSZ_PC) land size per capita(mu/per_capita) 28029 0.77 0.31 0.23 2.22 
control Log(VFAS_PC) fixed assets per capita(yuan/per_capita) 27924 2.41 1.09 0.49 6.24 

variables VR_Sex sex ratio 28262 1.04 0.08 0.82 1.21 
 VP_Lab proportion of labor force 28101 0.54 0.09 0.34 1.18 

climate D_Sun sunshine duration (100 days/year) 28490 1.76 0.17 1.17 2.24 
control Max_tem maximum temperature (celsius) 28490 37.58 1.33 33.47 43.20 

variables Min_tem minimum temperature (celsius) 28490 −0.72 3.95 −13.94 8.29 
 Ave_tem average temperature (celsius) 28490 19.73 2.03 15.48 24.38 
 Ln(GOTP_PM) GOTP_PM = grain output/sown area 28490 5.63 1.18 0 7.51 

other Ln(GOTP_PC) GOTP_PC = grain output/labor force 28490 5.47 1.29 0 7.21 
dependent Ln(GTFP) total factor productivity of grain production 28490 3.95 1.33 −3.09 5.12 
variables Cap_dist capital distortion (refer to Appendix) 28490 0.05 0.22 0 3.76 

 Lab_dist labor distortion (refer to Appendix) 28476 1.87 2.94 0 17.16 
 Total_dist total input distortion (refer to Appendix) 28476 0.99 0.37 0 2.13 

The dependent variables include the average net income per mu of planting (NINC_PM), the 
average net income per capita of planting (NINC_PC), and the total factor productivity (TFP) of 
planting. NINC_PM is calculated by dividing the total net income from family planting by the sown 
area, while NINC_PC is obtained by dividing the total net income from family planting by the 
household labor force. TFP is estimated by using the Cobb-Douglas production function (Cao & 
Birchenall, 2013; Lin, 1992). The core independent variable is whether a rural household in a 
county was affected by a typhoon. For robustness checks, annual maximum wind speed and annual 
average rainfall are also considered, with data sourced from the national meteorological science 
data sharing platform. Among the control variables, fixed assets (FAS) are measured by the original 
value of productive fixed assets owned by rural households, labor input is measured by working 
days (WDY) in planting, land size (LSZ) represents the area of land managed by rural households, 
and intermediate inputs (INP) are quantified by the operating expenses of planting. To address 
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potential issues with missing variables, village-level, and climate control variables are included in 
the regression model. To mitigate the impact of extreme outliers, all continuous variables are win-
sorized at the 1% level, and observations with only one occurrence or abnormal samples with zero 
dependent variables in 1993 are excluded. Descriptive statistics for the main variables are presented 
in Table 1. 

3. Benchmark Regression Results 

3.1. Baseline Regression  
In the baseline regression analysis, I utilize the intersection of the typhoon path with specific 

areas as the criterion for determining typhoon landfall and subsequently examine its impact on 
agricultural productivity. The estimation results presented in Table 2 confirm that typhoon shocks 
have a significant negative effect on agricultural productivity. Specifically, models (1−2) demon-
strate that in areas affected by the typhoon, the average net income per mu and net income per 
capita of rural households decreased by 11% and 13.9%, respectively. These results are statistically 
significant at the 1% level. Model (3) substitutes the dependent variable with the total factor produc-
tivity (TFP) of crop production and finds that the TFP growth rate in planting decreased by 3.72% 
significantly after the typhoon landed. Even after adding control variables for inputs such as assets, 
labor, land, and intermediate goods of rural households in models (4−6), the conclusions remain 
unchanged. 

Table 2. Regression results of typhoon impact on agricultural productivity. 

 Model(1) Model(2) Model(3) Model(4) Model(5) Model(6) 
Variable Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 
Typhoon −0.110*** −0.139*** −0.0372*** −0.102*** −0.115*** −0.0375*** 

 (0.0157) (0.0171) (0.00731) (0.0158) (0.0163) (0.00735) 
Ln(FAS) - - - −0.000620 −0.0299*** −0.00251 

 - - - (0.00735) (0.00765) (0.00409) 
Ln(WDY) - - - 0.222*** 0.380*** 0.0254** 

 - - - (0.0197) (0.0193) (0.0125) 
Ln(LSZ) - - - −0.274*** 0.398*** 0.0364** 

 - - - (0.0336) (0.0332) (0.0174) 
Ln(INP) - - - 0.0753*** 0.191*** −0.0274*** 

 - - - (0.0151) (0.0146) (0.00975) 
Household 

Fixed_effects Yes Yes Yes Yes Yes Yes 

Year 
Fixed_effects Yes Yes Yes Yes Yes Yes 

Observations 28,490 28,490 28,490 28,490 28,490 28,490 
R2 0.528 0.525 0.798 0.538 0.594 0.798 

Notes: NINC_PM-net income per mu; NINC_PC- net income per capita; TFP- total factor productivity of 
planting; FAS- fixed assets; WDY- working days; LSZ-land size; INP-intermediate inputs. *** p<0.01,** 
p<0.05,* p<0.1; Standard errors clustered at the household level are in parentheses. 

3.2. Endogeneity Discussion 
The occurrence of typhoons is a natural phenomenon and cannot be controlled by humans. 

Therefore, typhoons exhibit strict exogeneity. Despite this, completely eliminating endogeneity 
problems in econometric regression analysis remains challenging. There are three main sources of 
endogeneity in econometric models: omitted variables, measurement error, and reverse causality. 

First, concerning reverse causality, the formation and movement of typhoons are influenced 
by temperature, atmospheric pressure, and the Earth’s rotation. Agricultural productivity cannot 
affect these factors, thereby the issue of reverse causation is eliminated. 

Secondly, although I have controlled for variables related to rural household agricultural in-
puts in the baseline regression, omitted variables may still exist. For instance, villages with larger 
populations may possess stronger organizational capabilities in responding to typhoons, which 
could impact agricultural productivity. Moreover, villages with larger land areas per capita are more 
likely to engage in large-scale agricultural operations and enhance productivity. However, larger 
agricultural land sizes also experience more severe impacts from typhoons, resulting in greater 
declines in productivity. To minimize the influence of related factors, Models (1–3) in Table 3 
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include additional control variables at the village level, such as population size, land size per capita, 
fixed assets per capita, sex ratio, and labor force proportion. Following this adjustment, the core 
regression results remain unchanged. Furthermore, climate change affects both the frequency and 
intensity of typhoons and directly impacts agricultural production. Models (4–6) introduce re-
gional-level control variables like annual sunshine duration, maximum temperature, minimum tem-
perature, and average temperature. The fundamental regression results remain robust after consid-
ering these variables. 

Table 3. Consider omitted variables. 

 Model(1) Model(2) Model(3) Model(4) Model(5) Model(6) 
Variable Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 
Typhoon −0.134*** −0.144*** −0.0360*** −0.122*** −0.128*** −0.0323*** 

 (0.0162) (0.0167) (0.00759) (0.0163) (0.0168) (0.00772) 
Add village control variables 

Ln(VPOP) 0.300** 0.356*** 0.0668 0.232** 0.279** 0.0566 
 (0.122) (0.125) (0.0670) (0.118) (0.122) (0.0665) 

Log(VLSZ_PC) −0.214*** −0.190*** −0.0975*** −0.186*** −0.158*** −0.0957*** 
 (0.0293) (0.0351) (0.0285) (0.0297) (0.0353) (0.0280) 

Log(VFAS_PC) −0.00252 −0.0239** −0.00344 −0.00826 −0.0288** −0.00484 
 (0.0111) (0.0112) (0.00589) (0.0111) (0.0113) (0.00593) 

VR_Sex 0.0477 −0.134 −0.186** 0.0813 −0.0997 −0.186** 
 (0.128) (0.137) (0.0756) (0.128) (0.136) (0.0750) 

VP_Lab −0.518*** 0.116 −0.0432 −0.459*** 0.154 −0.0386 
 (0.137) (0.137) (0.0848) (0.139) (0.137) (0.0843) 

Add climate control variables 
D_Sun - - - −0.0465 0.0450 −0.141*** 

 - - - (0.0816) (0.0817) (0.0360) 
Max_tem - - - −0.00241 −0.00823 −0.000566 

 - - - (0.00862) (0.00801) (0.00378) 
Min_tem - - - −0.0579*** −0.0701*** −0.0208*** 

 - - - (0.00764) (0.00755) (0.00328) 
Ave_tem - - - 0.134*** 0.129*** 0.0158 

 - - - (0.0327) (0.0360) (0.0192) 
Control 

Variables Yes Yes Yes Yes Yes Yes 

Household 
Fixed_effects Yes Yes Yes Yes Yes Yes 

Year 
Fixed_effects Yes Yes Yes Yes Yes Yes 

Observations 27,846 27,846 27,846 27,846 27,846 27,846 
R2 0.543 0.599 0.798 0.544 0.601 0.799 

Notes: Control variables include baseline control variables in Table 1. VPOP-population size in village level; 
VLSZ_PC-land size per capita in village level; VFAS_PC-fixed assets per capita in village level; VR_Sex-sex 
ratio in village level; VP_Lab-labor force proportion in village level; D_Sun-annual sunshine duration; 
Max_tem-maximum temperature; Min_tem-minimum temperature; Ave_tem-average temperature 

 
Finally, concerning measurement error, while I accurately determine the affected areas based 

on historical typhoon paths, the assumption of homogeneity in assigning the impact of typhoons to 
the treatment group each year introduces some discrepancies. This is because typhoon intensity 
varies from year to year. The impact of typhoons primarily stems from strong winds and heavy 
rains. Therefore, I substitute the independent variables with other weather variables to analyze the 
impact of typhoons. Models (1–3) in Table 4 demonstrate that as the maximum wind speed in-
creases, the average net income per mu, net income per capita, and total factor productivity of 
planting decline more significantly. Similarly, Models (4–6) use annual average rainfall as the in-
dependent variable and reveal that in areas with higher rainfall, agricultural productivity is notably 
lower. Thus, replacing other typhoon-related weather variables does not substantially alter the base-
line regression results of this study.  
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Table 4. Consider measurement error. 

 Model(1) Model(2) Model(3) Model(4) Model(5) Model(6) 
Variable Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 

Max_wind −0.0233*** −0.0204*** −0.0102*** - - - 
 (0.00235) (0.00237) (0.00108) - - - 

Ave_rain - - - −0.376*** −0.335*** −0.170*** 
 - - - (0.0288) (0.0289) (0.0135) 

Control 
Variables Yes Yes Yes Yes Yes Yes 

Household 
Fixed_effects Yes Yes Yes Yes Yes Yes 

Year 
Fixed_effects 

Yes Yes Yes Yes Yes Yes 

Observations 27,846 27,846 27,846 27,846 27,846 27,846 
R2 0.545 0.601 0.799 0.547 0.602 0.800 

Note: Control variables include baseline control variables, village control variables, and climate control vari-
ables in Table 1.  

3.3. Robustness Test 
To assess the robustness of the baseline regression model, I perform supplementary tests. In-

itially, I modified the indicators of agricultural productivity. Models (1–3) in Table 5 substitute the 
dependent variables with grain output per mu (GOTP_PM), grain output per capita (GOTP_PC), 
and estimated grain total factor productivity (GTFP) to mitigate the effects of crop price fluctua-
tions on planting net income indicators. The regression outcomes reveal that typhoons notably de-
crease agricultural productivity, as evidenced by grain production, aligning with the baseline re-
gression results. 

Table 5. Robustness check. 

 Model(1) Model(2) Model(3) 
 Change the indicators of agricultural productivity 

Variable Ln(GOTP_PM) Ln(GOTP_PC) Ln(GTFP) 
Typhoon −0.0830*** −0.0303** −0.0493*** 

 (0.0163) (0.0127) (0.0151) 
Control 

Variables Yes Yes Yes 

Household 
Fixed_effects Yes Yes Yes 

Year 
Fixed_effects Yes Yes Yes 

Observations 27,846 27,846 27,846 
R2 0.613 0.768 0.723 

Notes: Control variables include baseline control variables, village control variables, and climate control var-
iables in Table 1. GOTP_PM-grain output per mu; GOTP_PC--grain output per capita; GTFP- total factor 
productivity of grain production. 

Secondly, to mitigate the influence of migration and farmland abandonment on agricultural 
production, Models (1–2) in Table 6 exclude samples with zero planting income for that year and 
re-run the regression. The findings demonstrate that the adverse impact of typhoons on agricultural 
productivity remains significant. Thirdly Models (3–5) exclude the sample from the year 1999, 
which includes specific abnormal observations. The regression outcomes suggest that the detri-
mental effect of typhoons endures. 
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Table 6. Robustness check. 

 Model(1) Model(2) Model(3) Model(4) Model(5) 
 Eliminate samples with zero output Eliminate abnormal year 1999 

Variable Ln(NINC_PM) Ln(NINC_PC) Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 
Typhoon −0.0625*** −0.0682*** −0.0728*** −0.0780*** −0.0141* 

 (0.0119) (0.0121) (0.0151) (0.0155) (0.00762) 
Control 

Variables Yes Yes Yes Yes Yes 

Household 
Fixed_effects Yes Yes Yes Yes Yes 

Year 
Fixed_effects 

Yes Yes Yes Yes Yes 

Observations 27,527 27,527 26,946 26,946 26,946 
R2 0.679 0.727 0.586 0.641 0.813 

Notes: Control variables include baseline control variables, village control variables, and climate control var-
iables in Table 1.  

Finally, I exclude the impact of other policies. Before the implementation of the rural tax and 
fee exemption reform, rural households were required to pay agricultural taxes and fees, which 
significantly affected their farming enthusiasm. Additionally, the land transfer rate plays a crucial 
role in promoting the efficient concentration of farmland and forming large-scale agricultural op-
erations, directly impacting productivity. Models (1–3) in Table 7 include variables for tax and fee 
burden of rural households and land transfer rate to control for the impact of rural tax policies and 
land transfer policies. The regression results do not change significantly. 

To eliminate the interference from policies that vary over time at the provincial level, such as 
the household contract responsibility system and family planning system gradually implemented 
by each province, Models (4–6) include the interaction term of province and year. After controlling 
for these effects, the regression coefficient is slightly reduced but remains negative and significant.  

Table 7. Exclude the impact of other policies. 

  Model(1) Model(2) Model(3) Model(4) Model(5) Model(6) 
Variable Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 
Typhoon −0.122*** −0.129*** −0.0324*** −0.112*** −0.0990*** −0.0121 

 (0.0163) (0.0168) (0.00772) (0.0188) (0.0194) (0.00890) 
Agri_tax −0.000398 −0.140** −0.106*** −0.00556 −0.162** −0.108** 

 (0.0865) (0.0636) (0.0387) (0.0955) (0.0765) (0.0427) 
Agri_fee 0.0490 0.0337 0.0237 0.0249 0.00764 0.0197 

 (0.0383) (0.0386) (0.0155) (0.0365) (0.0424) (0.0151) 
Land_tf −0.0588 0.0446 −0.0210 −0.0545 0.0355 −0.0329 

 (0.0405) (0.0438) (0.0274) (0.0393) (0.0421) (0.0259) 
Control 
Variables Yes Yes Yes Yes Yes Yes 

Household  
Fixed_effects Yes Yes Yes Yes Yes Yes 

Year  
Fixed_effects 

Yes Yes Yes Yes Yes Yes 

YearProv 
Fixed_effects No No No Yes Yes Yes 

Observations 27,846 27,846 27,846 27,846 27,846 27,846 
R2 0.544 0.601 0.799 0.562 0.617 0.810 

Notes: Control variables include baseline control variables, village control variables, and climate control var-
iables in Table 1. Agri_tax-agricultural tax burden; Agri_fee-agricultural fee burden; Land_tf-land transfer rate 

3.4. Permutation Test 
The exogeneity of the typhoon movement path is crucial to ensure that the baseline regression 

estimate is unbiased. To verify this assumption, I conducted a permutation test. Initially, during our 
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study period, the total number of typhoons hitting each region was 136. So I randomly selected 136 
samples from the regional panel data as the treatment group and assigned a value of 1 to the simu-
lated typhoon variable; otherwise, the value was 0 for the control group. Subsequently, I re-estimate 
the coefficients according to regression equation (1). This process is repeated 500 times to obtain 
the distribution of the estimated coefficients for different productivity indicators. Finally, I conduct 
a comparative analysis with the regression results from Models (4–6) in Table 2. 

Figures 3 (a), 3 (b), and 3 (c) display the distribution of estimated coefficients for the simu-
lated impact of typhoons on net income per unit of planting, net income per capita of planting, and 
total factor productivity of planting, respectively. The simulated false coefficients are distributed 
approximately normally around zero, while the true values of the baseline regression, indicated by 
the dotted line, are situated at the periphery of the false coefficient distribution. This confirms that 
the treatment effect of typhoon impacts on agricultural productivity in the baseline regression does 
not encompass the influences of other unobservable variables.  

 

  

(a) (b) 

 
(c) 

 

Figure 3: (a) Simulated typhoon and Ln(NINC_PM); (b) Simulated typhoon and Ln(NINC_PC); (C) Simu-
lated typhoon and Ln(TFP). 

3.5. Heterogeneity Analysis 
The characteristics of villages and rural households can either worsen or alleviate the impact 

of typhoons. I employ the following regression model to examine the heterogeneous effects from 
three perspectives: village geographical environment, rural organizational capabilities, and land 
transfer level: 

( ) ( )ict ct i ct ct i ct i t ictY Typhoon Z Typhoon Zα β δ ϕ γ θ δ ε= + × + + + + + +X    (2) 

Here, 𝑍𝑍(𝑖𝑖)𝑐𝑐𝑡𝑡 represents the characteristics of the village or rural household, including whether 
the village is located in a plain area (Plain), village cadre density (Cdensity), and the proportion of 
rural household contracted land in the total cultivated land (Tsland). The remaining variables are 
consistent with the baseline regression.  

Models (1–3) in Table 8 demonstrate that villages situated in plain areas exacerbate the neg-
ative effects of typhoons on agricultural productivity compared to those in hills and mountains. 
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This is due to their proximity to the sea, leading to higher typhoon intensity. Moreover, plain areas 
are more susceptible to post-typhoon disasters like flooding. 

Table 8. Heterogeneity analysis. 

 Model(1) Model(2) Model(3) 
 Geographical heterogeneity 
 Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 

Typhoon −0.186*** −0.181*** −0.0552*** 
×Plain (0.0445) (0.0442) (0.0165) 

Typhoon −0.0837*** −0.0719*** −0.00530 
 (0.0206) (0.0215) (0.00997) 

Plain 0.686*** 0.756*** 0.300*** 
 (0.0819) (0.0817) (0.0265) 

Observations 27,846 27,846 27,846 
R2 0.565 0.620 0.811 
 Model (4) Model (5) Model (6) 
 Organizational capability heterogeneity 
 Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 

Typhoon 0.0953** 0.102** 0.0180 
×Cdensity (0.0444) (0.0429) (0.0214) 
Typhoon −0.141*** −0.130*** −0.0180* 

 (0.0227) (0.0230) (0.0106) 
Cdensity 0.198*** 0.249*** 0.0646 

 (0.0592) (0.0565) (0.0440) 
Observations 27,846 27,846 27,846 

R2 0.562 0.618 0.810 
 Model (7) Model (8) Model (9) 
 Land transfer heterogeneity 
 Ln(NINC_PM) Ln(NINC_PC) Ln(TFP) 

Typhoon 0.0824 0.111* 0.0842*** 
×Tsland (0.0620) (0.0590) (0.0299) 
Typhoon −0.125*** −0.117*** −0.0261*** 

 (0.0221) (0.0219) (0.00935) 
Tsland −0.0722* 0.0128 −0.0503* 

 (0.0410) (0.0434) (0.0269) 
Observations 27,846 27,846 27,846 

R2 0.562 0.617 0.810 
Control 

Variables Yes Yes Yes 

Household 
Fixed_effects Yes Yes Yes 

Year 
Fixed_effects 

Yes Yes Yes 

Notes: Control variables include baseline control variables, village control variables, and climate control var-
iables in Table 1. Plain-Whether the village is located in a plain area; Cdensity-Village cadre density; Tsland-
The proportion of rural household contracted land in the total cultivated land. 

Second, models (4–6) demonstrate that as the proportion of cadres in the village increases, the 
negative impact of typhoons is significantly weakened. This is due to the influential role of grass-
roots organizations in mitigating the effects of disasters. Village cadres can promptly convey infor-
mation from higher-level governments about typhoon warnings and preventive measures, then help 
farmers take effective measures to reduce the serious impact of typhoons on agricultural production. 
Finally, models (7–9) show that when rural households hold a higher share of transferred land from 
others, the negative effect of typhoons on planting productivity is reduced. The implementation of 
policies such as the “Rural Land Contract Law of the People’s Republic of China” legally 
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guarantees the stability of farmland, which can improve the scale of agricultural land and agricul-
tural productivity (Chari et al., 2021). Rural households with a higher share of transferred land may 
be more skilled in agricultural production and have more flexible and effective measures to with-
stand the negative impact of typhoons. 

4. Mechanism Analysis 

4.1. Direct Mechanism 
The direct impacts of typhoons on agricultural production are usually reflected in the destruc-

tion of production conditions, crop damage, and even labor casualties. Therefore, it is essential to 
investigate how typhoons directly decrease crop yield due to their strong winds or heavy rains. 
Models (1–2) in Table 9 indicate that typhoons did not significantly affect the sown area of planting 
or the number of family laborers. In other words, rural households’ enthusiasm for agricultural 
farming remains strong despite the typhoons. The reason is that the agricultural planting period is 
generally at the turn of spring and summer, and typhoons mostly occur in summer and autumn. 
Therefore, farmers in coastal areas are unlikely to change their agricultural production plans due to 
subsequent typhoons. Moreover, the stable number of household laborers suggests that the ty-
phoon-related casualties in our study are not severe. Therefore, the decrease in output cannot be 
solely attributed to a reduced labor force. 

Second, Model (3) in Table 9 demonstrates that using the total net income from planting as a 
measurement indicator, typhoons significantly reduced agricultural productivity. Given that the de-
cline in planting enthusiasm and the decrease in laborers are not core factors contributing to agri-
cultural productivity loss, the substantial decrease in the net income from planting confirms the 
direct influence of typhoons on agricultural output. 

Table 9. Verification of direct mechanism. 

  Model(1) Model(2) Model(3) 
  Ln(Sown) Ln(Labor) Ln(Nincome) 
Typhoon 0.00466 0.00720 −0.103*** 

 (0.00952) (0.00474) (0.0203) 
Control Variables Yes Yes Yes 
Household Fixed_effects Yes Yes Yes 
Year Fixed_effects Yes Yes Yes 
YearProv Fixed_effects Yes Yes Yes 
Observations 27,782 27,813 27,846 
R2 0.603 0.547 0.610 

Notes: Control variables include baseline control variables, village control variables, and climate control var-
iables in Table 1. Sown-Sown area of planting; Labor-The number of rural household labor force; Nincome-
Net income of planting. 

4.2. Indirect Mechanism 
When faced with typhoons, rural households will make adjustments in agricultural input allo-

cation to minimize potential losses. However, these adjustments are often unexpected and uninten-
tional, which can lead to a relative distortion in input allocation and a negative deviation in agri-
cultural productivity. 

First, I examine the impact of typhoons on rural households’ agricultural input decisions. The 
dependent variable of the baseline regression model is replaced with the agricultural inputs of rural 
households. Models (1–4) in Table 10 indicate that typhoons do not have a significant impact on 
the scale of land cultivated by rural households. However, rural households notably increase their 
investment in fixed assets while reducing labor time and intermediate inputs. The land cultivated 
by rural households is allocated based on the “rural land contract management system” and acquired 
through land transfers from other rural households. Therefore, the scale of land farming is not di-
rectly influenced by the occurrence of typhoons. 

Additionally, rural households need to reinforce crops or clear farmland drainage to mitigate 
the impact of typhoons. The implementation of such measures necessitates investment in fixed 
assets like windproof brackets, iron and wood farm tools, and drainage machinery, which accounts 
for the rise in fixed assets. Conversely, the adverse weather conditions caused by typhoons impede 
rural households’ engagement in on-site farming. The destruction of farmland also complicates 
planting, while crop damage decreases the demand for intermediate inputs. Models (5–7), which 



A&R 2024, Vol. 2, No. 4, 0024 12 of 16 
 

analyze agricultural inputs per mu as the dependent variable, demonstrate similar behavioral pat-
terns among rural households. 

Table 10. Changes in agricultural inputs. 

  Model(1) Model(2) Model(3) Model(4) Model(5) Model(6) Model(7) 
  Ln(LSZ) Ln(FAS) Ln(WDY) Ln(INP) Ln(FAS_PM) Ln(WDY_PM) Ln(INP_PM) 
Typhoon −0.0113 0.0581*** −0.0453*** −0.0684*** 0.0856*** −0.0424*** −0.0708*** 

 (0.00767) (0.0218) (0.0115) (0.0167) (0.0240) (0.0115) (0.0154) 
Control 
Variables Yes Yes Yes Yes Yes Yes Yes 

Household  
Fixed_effects 

Yes Yes Yes Yes Yes Yes Yes 

Year  
Fixed_effects Yes Yes Yes Yes Yes Yes Yes 

YearProv 
Fixed_effects Yes Yes Yes Yes Yes Yes Yes 

Observations 27,846 27,846 27,846 27,846 27,846 27,846 27,846 
R2 0.672 0.633 0.633 0.681 0.657 0.499 0.700 

Notes: Control variables include village control variables and climate control variables in Table 1. FAS_PM-
original value of productive fixed assets per mu; WDY_PM-labor input of planting per mu; INP_PM-operating 
expenses of planting per mu. 

In general, the arrival of typhoons prompts rural households to temporarily adjust their agri-
cultural inputs by substituting labor and intermediate inputs with fixed assets. Further discussion is 
needed to determine whether this adjustment in agricultural inputs leads to misallocation. To assess 
whether typhoons distort the input allocation of rural households, I first calculate the distortion 
index of agricultural production and then analyze it as the dependent variable in the baseline re-
gression. 

Table 11. Agricultural input distortions. 

 Model(1) Model(2) Model(3) 
 Cap_dist Lab_dist Total_dist 

Typhoon 0.00920** 0.141*** 0.0130** 
 (0.00445) (0.0404) (0.00598) 

Control 
Variables Yes Yes Yes 

Household Fixed_effects Yes Yes Yes 
Year Fixed_effects Yes Yes Yes 

YearProv Fixed_effects Yes Yes Yes 
Observations 27,846 27,833 27,833 

R2 0.470 0.635 0.677 
Notes: Control variables include baseline control variables, village control variables, and climate control var-
iables in Table 1. The calculation process of Cap_dist, Lab_dist, and Total_dist can be referred to in Appendix. 

Models (1–2) in Table 11 demonstrate that typhoons significantly increased the degree of 
distortion in rural households’ capital investment and exacerbated the distortion in labor input. The 
rise in investment in fixed assets and the decline in labor input caused by the typhoon led to a 
deviation in the capital and labor inputs from the typical endowment of rural households. This 
unexpected adjustment in factor inputs creates distortions, with labor distortions exceeding capital 
distortions. This is attributed to the fact that capital investment has traditionally played a minor role 
in China’s agricultural production, which relies more heavily on labor and intermediate goods. 
Since the capital stock of agricultural production is low and the capital fluctuation range is limited, 
the impact of capital distortion is relatively small; on the contrary, since agricultural production 
mainly relies on labor input, the typhoon has caused a reduction in agricultural working days and 
the phenomenon of labor idleness has become more obvious, which has a greater impact on input 
distortion. Combining the distortions in capital and labor inputs, Model (3) shows that the overall 
distortion in rural households’ input allocation worsened due to typhoon impacts. I conclude that 
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the involuntary substitution of fixed assets for labor in the aftermath of a typhoon is a key factor 
contributing to the distortion of overall input allocation. Thus, the hypothesis of “typhoon impact—
distortion of input allocation—decline in agricultural productivity” proposed in the theoretical anal-
ysis of this study is fully supported by empirical evidence. 

5. Cost-Benefit Analysis 
Through the above analysis, we understand that typhoons significantly reduce agricultural 

productivity. An important question is whether the government’s financial investment in agricul-
ture can mitigate this negative impact. Model (1) in Table 12 uses “expenses for agriculture, for-
estry, water, and electricity” (AFE) from the “Financial Statistics of Prefectures, Cities, and Coun-
ties Nationwide” for the years 1993 to 2007 as a proxy for local government’s agricultural fiscal 
expenditures. These models include interaction terms between the typhoon variable and AFE to 
assess their effects. 

Model (1) indicates that local government’s agricultural fiscal expenditures effectively miti-
gate the decline in agricultural productivity, as measured by the net income per mu of planting. 
Specifically, if the government were to double its agricultural fiscal expenditure, the local net in-
come loss per mu could be reduced by 18.5%. With an average agricultural fiscal expenditure of 
19.47 million yuan per year in the sample, an increase of approximately 20 million yuan in local 
government expenditures would offset nearly 20% of the drop in agricultural productivity caused 
by typhoons. This represents the estimated lower limit of the efficiency of government agricultural 
fiscal expenditures in suppressing typhoon-related agricultural losses. 

Furthermore, data from 2003 to 2006 reveal that local government “water conservancy and 
meteorological expenditures” account for about 17% of the total “agriculture, forestry, water, and 
electricity expenses.” Therefore, if the positive effect of government fiscal expenditure on reducing 
agricultural productivity decline is attributed solely to water conservancy and meteorological con-
struction, then an increase of 3.4 million yuan in these expenditures could counteract nearly 20% 
of the decline in agricultural productivity caused by typhoons. This estimate provides the upper 
limit of the efficiency of government agricultural fiscal expenditures in mitigating typhoon-related 
impacts. 

Table 12. Cost-Benefit analysis of agricultural production expenditures. 

 Model(1) 
 Ln(NINC_PM) 

Typhoon×Ln(AFE) 0.185*** 
 (0.0594) 

Ln(AFE) −0.0259 
 (0.0969) 

Typhoon −0.270*** 
 (0.0626) 

Control Variables Yes 
Household Fixed_effects Yes 

Year Fixed_effects Yes 
YearProv Fixed_effects Yes 

Observations 10,971 
R2 0.396 

Notes: Control variables include baseline control variables, village control variables, and climate control var-
iables in Table 1. “Expenses for agriculture, forestry, water and electricity” were only disclosed from 1993 to 
2002. This study uses the sum of “agricultural expenditures,” “forestry expenditures,” and “water conservancy 
and meteorological expenditures” as proxy indicators from 2003 to 2006. In 2007, this study uses “agriculture, 
forestry, and water expenditure” as a proxy indicator. 

6. Conclusions 
The threat of natural disasters to rural development has garnered attention from governments 

worldwide. This study focuses on coastal typhoons, identifying the affected treatment group and 
the unaffected control group based on their unique movement paths. Using a difference-in-differ-
ences (DID) model and survey data from the Rural Fixed Observation Spot of the Chinese Ministry 
of Agriculture, this study finds that typhoons significantly reduce the agricultural productivity of 
local rural households. Specifically, the average income per mu and per capita from planting de-
creases by 11% and 14%, respectively, while agricultural total factor productivity falls by 
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approximately 3.7%. This provides quantitative evidence of the adverse effects of typhoons on 
agricultural production. 

The mechanism through which typhoons exacerbate the decline in agricultural productivity 
operates through several channels. First, typhoons directly damage crops, reducing total output. 
Second, in anticipation of the typhoon, rural households significantly increase asset investment in 
agricultural production while reducing labor input and intermediate goods. This adjustment leads 
to a distortion in the allocation of agricultural inputs, further diminishing productivity. The adverse 
impact of typhoons is more pronounced in plain areas, whereas strengthening rural organizational 
capabilities and improving land circulation can substantially mitigate the negative effects. This im-
plies that policies should enhance farmland and water conservancy infrastructure, consolidate the 
strength of rural grassroots organizations, and expand land circulation channels. 

Finally, a cost-benefit analysis indicates that reducing the negative impact of typhoons on 
agricultural productivity by 20% within the context of China requires local financial support for 
agriculture amounting to approximately 3.4 million to 20 million yuan. This provides a reference 
for other developing countries in planning financial investments for typhoon prevention and control. 
To optimize the use of financial resources, future improvements should focus on streamlining 
spending processes, updating assessment systems, and developing disaster prevention strategies 
tailored to local conditions. 

However, this study has the following limitations: First, this study focuses solely on the im-
pact of typhoons in China’s coastal regions, neglecting indirect consequences like supply chain 
disruptions and market fluctuations in inland areas resulting from shortages of agricultural products. 
Second, due to the lack of detailed data, this study has only conducted a preliminary examination 
of the effectiveness of government financial support for disaster prevention and has not yet pro-
posed a comprehensive and practical improvement plan. These limitations highlight the need for 
additional research in the future. 
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Appendix 
Calculating the Distortion of Agricultural Inputs in Rural Households 

Assume rural households use capital (𝐾𝐾), labor (𝐿𝐿), land (𝑇𝑇), and intermediate goods (𝑀𝑀) for 
agricultural production, following a Cobb-Douglas production function. Let total factor productiv-
ity be denoted as 𝐴𝐴, and output as 𝑌𝑌: 

it it it it it itY A K L T Mα β γ δ=                         (A1) 

In Equation A1, 𝑖𝑖 represents the rural household and 𝑡𝑡 represents the year, with the return to 
scale of the production function remaining unchanged (𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 = 1). The rural household’s 
profit maximization problem is: 

{ }max (1 ) (1 )it it Kit it Kit Lit it Lit Tit it Mit itP Y K P L P P T P Mτ τ− + − + − −   (A2) 

Due to the lack of detailed information on the prices of various agricultural inputs (𝑃𝑃𝑖𝑖𝑖𝑖), I use 
the total income from agricultural production (𝑃𝑃𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖) directly. Hsieh and Klenow (2009) discussed 
productivity due to irrational allocation of capital and labor inputs under distorted factor prices. 
They assumed 𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾  and 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿  represent the market prices of capital and labor, while (1 + 𝜏𝜏𝐾𝐾𝐾𝐾𝐾𝐾)𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾  
and (1 + 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿)𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿  denote the distorted prices faced by enterprises, with 𝜏𝜏𝐾𝐾𝐾𝐾𝐾𝐾 and 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿 represent 
the degrees of distortion for capital and labor inputs, respectively. 

This study focuses on the impact of typhoon disasters on rural households’ adjustment of fixed 
assets or labor input, regardless of distorted input factor prices. This adjustment is reflected in the 
distortion of capital input (1 + 𝜏𝜏𝐾𝐾𝐾𝐾𝐾𝐾)𝐾𝐾𝑖𝑖𝑖𝑖  and labor input (1 + 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿)𝐿𝐿𝑖𝑖𝑖𝑖. I define the distortion of 
agricultural input as the total cost of inputs: (1 + 𝜏𝜏𝐾𝐾𝐾𝐾𝐾𝐾)𝐾𝐾𝑖𝑖𝑖𝑖𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾  and (1 + 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿)𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿. Here, 𝜏𝜏𝐾𝐾𝐾𝐾𝐾𝐾 
and 𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿 indicate the distortion of capital and labor factors, respectively. The calculation of the 
distortion index is similar to previous literature. 
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Assuming land is used free of charge (𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 = 0) and given the difficulty of obtaining data of 
intermediate inputs, I calculate only the distortions in capital and labor inputs. Based on the profit 
maximization conditions derived from Equations A1 and A2, we have: 

(1 )it it Kit Kit itP Y P Kα τ= +                        (A3) 

  (1 )it it Lit Lit itP Y P Lβ τ= +                        (A4) 

Thus, capital and labor input distortions can be expressed as: 

1 it it
Kit

Kit it

P Y
P K
ατ+ =                              (A5) 

1 it it
Lit

Lit it

P Y
P L
βτ+ =                              (A6) 

The overall factor distortion index for rural households can be defined as: 

(1 ) (1 )it Kit Litdist α βτ τ= + +                       (A7) 

To measure capital and labor distortion, I utilize the following data: 𝑃𝑃𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖  as the total income 
of agricultural planting; 𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖  as the original value of productive fixed assets; 𝐿𝐿𝑖𝑖𝑖𝑖 as the number 
of days rural households worked in planting each year; and 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿  as the opportunity cost of labor, 
estimated from the average income of migrant workers at the county level. All monetary values 
(𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑃𝑃𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖 , 𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖  and 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿) are adjusted for inflation (with 1986 as the base year). Finally, 𝛼𝛼 
and 𝛽𝛽 represent the output elasticity of capital and labor in the Cobb-Douglas production function 
as follows: 

_ _it it it it it itlnY lnK lnL lnT lnM i fe t feα β γ δ ε= + + + + + +       (A8) 

This regression model is used to estimate the coefficients for capital and labor inputs (𝛼𝛼 and 
𝛽𝛽) and determine the degree of distortion in agricultural inputs (𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). 
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