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Abstract: Using the provincial
panel data from 1978 to 2020 as the research object, this study employs the
fixed effect SFA-Malmquist model to measure the agricultural total factor
productivity of each province and city, and the spatial correlation of China’s
agricultural total factor productivity is determined by Moran’s I. On this
basis, three weights (adjacency, economy, geography) are included as spatial
factors in three spatial β-convergence models (SAR, SEM and SDM), and the
spatial convergence characteristics of China’s agricultural total factor
productivity are analyzed in different time periods and different regions. The
study found that: First, China’s agricultural total factor productivity shows a
growing trend, but as time goes on, its growth rate gradually slows down, and
the growth rate in the eastern region is higher than that in the central and
western regions. Second, China’s agricultural total factor productivity has
significant spatial correlation and spatial convergence characteristics. The
differences in agricultural total factor productivity in various regions are
shrinking over time, and the spatial spillover effect significantly shortens
the convergence process. Due to spatial convergence, while carrying out
agricultural production, all regions should thoroughly consider the advantages
of agricultural resources in neighboring regions and strengthen cooperation and
exchanges between regions.
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1. Introduction


Agricultural production is an important foundation for
national stability and security (Hou & Yao,
2018).
Since 1978, relying on the increase of factor input and the improvement of
total factor productivity, China’s agriculture has made great achievements. The
output and productivity of all major agricultural sectors have increased
rapidly (Gong, 2018b; Lin, 1992). It has created a miracle that
less than 10 % of the world’s arable land has fed 20 % of its population (Li, 2014). The total agricultural output
increased from 111.8 billion yuan in 1978 to 7174.8 billion yuan in 2020.
However, with the increasing scarcity of land resources, the shortage of rural
labor force caused by the acceleration of urbanization, and the diminishing
marginal returns caused by the continuous improvement of fertilizer and
machinery inputs, the contribution of the increase in agricultural factor
inputs to agricultural growth is constantly decreasing. The way to promote
agricultural development by relying on factor inputs is unsustainable.
Continuously improving agricultural total factor productivity has almost become
the only choice (Gao, 2015; Yang & Yang, 2013).


Due to the critical role of total factor productivity
(TFP) in agricultural production, TFP has become an essential focus of scholars
at home and abroad. Scholars use different methods (parametric methods and
nonparametric methods), different data (macro statistical data, micro survey
data), and different production function settings (Translog production function
or C-D function) to measure China’s agricultural TFP to make an accurate
judgment on the trend of China’s agricultural TFP and its key influencing
factors (Pan & Ying, 2012). Still, the existing research has
not reached a more consistent conclusion. This difference is not only reflected
in the measurement value of China’s agricultural TFP (Wu et al., 2001; Xu, 1999). More importantly,
they have severe differences in China’s agricultural TFP trend after the 1990s
(Gong, 2018a). Some scholars believe that the
growth rate of China’s agricultural TFP continued to increase in the late 1990s
and began to slow down until 2000 (Nin Pratt et
al., 2008;
Wang et al., 2013). Other scholars believe that the
growth rate of China’s agricultural TFP has slowed down since the 1990s (Chen et al., 2008; Zhou & Zhang, 2013).


In addition, since 1978, with the improvement of
China’s agricultural market and the continuous improvement of regional openness
and exchange, the flow of agricultural production factors between regions has
become increasingly frequent (Wu, 2010). Spatial factors have
become a negligible factor affecting China’s agricultural TFP, but few scholars
have included spatial factors in the analysis of agricultural TFP (Wang et al., 2010). Productivity caused by
differences in resource endowments and agricultural development levels in
different regions spatially distributed? How will this spatial difference
evolve? Does the difference in total factor productivity among regions show a
convergence trend over time? If so, what form of convergence? What are the
characteristics of convergence in different regions and stages of development?
Therefore, the scientific measurement of China’s agricultural TFP since 1978
and the analysis of its differences in spatial distribution and the convergence
law over time will help to understand the growing trend of China’s agricultural
TFP since the reform and opening up. An objective understanding of the spatial
differences and temporal evolution of agricultural TFP is of great significance
for strengthening the scientific flow of agricultural production factors
between regions, the sustainable development of China’s agriculture, and the
realization of modern agriculture.


2. Literature Review


Based on the critical role of TFP in China’s
agricultural development, scholars have conducted detailed and in-depth
research on it, which has laid a good foundation for the writing of this paper.
Throughout the existing literature, the research on China’s agricultural TFP
can be elaborated from three aspects: research methods, research contents, and
research conclusions.


Research methods. Currently, the mainstream methods
for measuring the TFP of China’s agriculture are Data Envelopment Analysis
(DEA) and Stochastic Frontier Analysis (SFA). Huo et al. (2011), Yang and Yang (2013),
Wang and Zhang (2018) all used the DEA
method to measure the TFP of Chinese agriculture. Considering that agricultural
production is a complex process and will be affected by many factors in the
production process, DEA can only consider the primary input and cannot attribute
other factors to the residual term, which may affect measurement accuracy to a
certain extent (Shi et al., 2016). For this reason, some
scholars suggest using the SFA method to measure the TFP of China’s
agriculture. Quan (2009), Kuang (2012), Zhang and Cao (2013)
began to use the SFA method to measure China’s agricultural TFP. Although the
total factor productivity measured by the SFA method is more in line with the
characteristics of agricultural production, and the measurement results are
better than DEA to a certain extent (Fan & Li,
2012),
the existing literature on the measurement of agricultural TFP by SFA ignores
the personal effect in the non-efficiency term, which may overestimate the
technical efficiency, thus affecting the measurement results of TFP (Kumbhakar, 1990).


In the research content aspect, the scholars’ research
on agricultural TFP has been measured in detail from different levels, such as
micro (Gao et al., 2016; Jia & Xia, 2017) and macro (Wang & Zhang, 2018), and the critical factors
affecting TFP have been studied (Li & Yin,
2017;
Zeng et al., 2018). However, the above studies
regard different regions as independent individuals and do not include the
inter-regional flow of production factors and the resulting spatial
relationship. With the development of spatial econometrics and economic
geography, some scholars began to consider the role of spatial factors in
agricultural production. For example, Wang et al. (2010)
used the spatial econometric model to study the growth of China’s agricultural
TFP and its influencing factors from 1992 to 2017. Yang and Yang (2013) studied the spatial correlation of China’s
agricultural TFP and concluded that the agricultural TFP in the adjacent areas
has obvious spatial effects.


In terms of research conclusions, there are some
differences in the existing research on the measurement value of China’s
agricultural TFP. For example, for the study of the average annual growth rate
of China’s agricultural TFP from 1981 to 1995, Xu (1999)
showed that the average annual growth rate of the above interval was −1.48 %,
while Wu et al. (2001) obtained an average
annual growth rate of 2.41 %. In addition, scholars have significant
differences in the trend of China’s agricultural TFP after the 1990s (Gong, 2018a). Nin et al. (2008), Wang et al. (2013)
believe that the growth rate of China’s agricultural TFP continued to increase
in the late 1990s, while Chen et al. (2008), Zhou and Zhang (2013) believe that the growth rate of China’s agricultural
TFP has slowed since the 1990s.


In summary, the existing literature can still be
expanded from the following aspects. Considering that the SFA method has more
advantages than DEA in the measurement of agricultural TFP, the existing
research on the measurement of agricultural TFP using SFA ignores the
individual effects in the non-efficiency term, so the SFA-Malmquist method with
fixed effects can be used to solve this problem. In addition, with the
strengthening of inter-regional exchanges, spatial factors play an increasingly
important role in agricultural production. The convergence model considering
spatial effects can deeply analyze the evolution of agricultural TFP in time
and space. Based on this, this paper will take China’s provincial agricultural
production data from 1978 to 2020 as the research unit and use the fixed effect
SFA-Malmquist model, which can separate the individual effect and the
non-efficiency term to re-measure China’s agricultural TFP. On this basis,
Moran’s I and spatial convergence model are used to study the evolution of
agricultural TFP in time and space and the influence of spatial factors on
agricultural TFP.


3. Research Methods


3.1.
Fixed Effect SFA-Malmquist Model


DEA and SFA are the mainstream methods to measure
Total factor productivity (TFP), the Malmquist index is a specific index
established by Caves et al. (1982) to measure the change
in total factor productivity based on the Malmquist consumption index and
Shepherd distance function. In practical research, the distance function in the
Malmquist index is generally calculated by parametric methods (such as SFA) or
non-parametric methods (such as DEA) and then decomposed (Shi et al., 2016). As mentioned before, the
agricultural production process is affected by many factors. SFA can
incorporate these random factors into the classical white noise term and has
more advantages than the DEA method in measuring agricultural production
efficiency. Considering that previous studies ignore the individual effects of
regions, this may cause bias in the measurement results (Kumbhakar, 1990). Therefore, this paper will use
the fixed effect SFA model proposed by Greene (2005)
to measure technical efficiency (TE) and then use the Malmquist index
decomposition method to obtain total factor productivity (TFP), technical
change (TPCH), technical efficiency change (TECH). The basic model of
SFA-Malmquist with fixed effect is as follows:
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Here,  is the
output of province  in  years, is the input of  in  years,
 is
the parameter to be estimated,is the efficient production function,
 is
the fixed effect of the province,  is the random error term, and
assume that ,  is the technical inefficiency
term. The setting of  has many forms in practical
research. The C-D and Translog functions are the most commonly used function
forms. To study the accuracy of this paper, the authors employed the LR test.
LR test shows that the model in the form of the Translog function is more in
line with the data of this paper. Therefore, Formula (1) can be rewritten as
follows:
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Technical efficiency (TE) can be expressed as:
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According to the formula
(3), the change of technical efficiency from t to t + 1 can be calculated and
denoted as,
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The technical change () can be
derived from the derivation of formula (2). Because under the assumption of
non-neutral technical change, technical change will change with the change of
input, the technical change value of adjacent periods should be taken as the
geometric average value, that is
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Considering that most scholars believe that
agricultural production conforms to the characteristics of constant returns to
scale (Xu et al., 2011), in addition, it is assumed that
the TFP obtained under variable returns to scale will be affected by the scale
of production (Liu & Meng, 2002). Therefore, under the condition of
constant returns to scale, Malmquist index decomposition see formula (6),
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3.2.
Moran’s I Index


Different regions have differences in agricultural TFP
due to different resource endowments. However, according to Tobler (1970), “the first law of geography”, there is a specific
relationship between everything, and with the shortening of distance, this
relationship will become closer and closer. (Tobler, 1970)
A specific spatial correlation in agricultural TFP may exist. Therefore,
testing the spatial correlation of agricultural TFP is crucial. This paper will
use the most popular Moran’s I to measure the spatial correlation of
agricultural TFP in different regions. Moran’s I can be expressed as:
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Where,  is the
variance of the sample,  is the spatial weight matrix,
and  and
are
the observed values of spatial positions and . The value of I is between −1 and 1, greater than 0
indicates positive spatial correlation, less than 0 indicates negative spatial
correlation, and equal to 0 indicates no spatial correlation.


In this paper, three
spatial weight matrices will be selected, which are geographical adjacency
spatial weight matrix (), economic distance spatial weight
matrix ()
and spatial distance weight matrix ().


Geographical adjacency
space weight matrix:


Economic distance
spatial weight matrix:


Spatial distance weight
matrix:


Among them,  and
 represent
region  and
region  respectively,
represents
the average per capita real GDP of region  in the sample interval, and represents
the geographical distance between the provincial capitals of region  and
region .


3.3.
Spatial Convergence Model


There are three
classical convergence models,  convergence,  convergence,
and club convergence, among which  convergence is the most widely
used. -convergence
can be divided into absolute -convergence and conditional -convergence.
It mainly tests whether the growth rate of inter-provincial agricultural TFP
converges. The main difference between absolute -convergence and
conditional -convergence is that absolute -convergence
assumes that the resource endowments of each region are the same. In contrast,
conditional -convergence considers the
differences in resource endowments in different regions, which is more in line
with actual production activities (Zhang et al., 2015). Therefore, this paper will use
convergence to test the convergence of agricultural TFP, and compare the
difference between absolute-convergence and conditional-convergence.
The classical conditional-convergence model is shown in
formula (8). If  is removed, it is absolute-convergence.
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Since the traditional-convergence
model does not consider the spatial influence, the convergence conclusion is
biased (Yu, 2015). Therefore, this paper
constructs a-convergence model considering
spatial factors and compares the differences between the traditional-convergence
model and the spatial-convergence model. Since spatial
models can be divided into the spatial autoregressive model (SAR), spatial
error model (SEM), and spatial Dubin model (SDM), the corresponding-convergence
models considering spatial factors can be divided into the following three
types:


The-convergence model
of SAR:
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The-convergence model
of SEM:
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The-convergence model
of SDM:
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Among them,  and
 are
the agricultural TFP of province  in period  and period ,
respectively, and  is the convergence judgment
coefficient. Ifis significantly negative, it
indicates convergence, and the convergence speed  can be calculated
according to .  is the estimated coefficient of
the control variable . When , it is absolute -convergence.
Otherwise, it is conditional -convergence.  is a random error
term and is assumed to satisfy .  is the spatial auto-regressive
coefficient,  is the error term of spatial
autocorrelation, and  is the regression coefficient
of the interaction effect between the control variable and the spatial weight
matrix.  is
the spatial weight matrix.


4. Index Selection and Data Sources


To conduct in-depth research on China’s agricultural
total factor productivity, the starting year of this study was selected as
1978, and all data were from the “China Statistical Yearbook”, “China Rural
Statistical Yearbook”, “New China 50 Years Statistical Data Compilation”.
Considering the problem of merging Sichuan and Chongqing before, Chongqing is
classified into Sichuan. Hainan, and Tibet, not within the scope of this study
due to the lack of data. This paper finally obtains the panel data of 28
provinces and cities from 1978 to 2020 for 43 years.


In constructing the input-output index system for
measuring agricultural TFP, this paper refers to the general treatment method
of the existing literature (Gong, 2018a; Shi et al., 2016). It selects the number of
employees in agriculture, forestry, animal husbandry, and fishery (ten thousand
people), the sown area of crops (thousand hectares), the total power of
agricultural machinery (ten thousand kilowatts), and the application amount of
agricultural fertilizer (ten thousand tons) to represent the labor input, land
input, capital input and intermediate input in the process of agricultural
production, respectively. Taking the total output value of agriculture,
forestry, animal husbandry, and fishery (billion yuan) as output and conducted
price index deflations based on the 1978.


By studying the existing literature on the selection
of influencing factors of agricultural TFP and considering data availability.
This paper selects the proportion of the affected area of crops to the affected
area (Gong, 2018a), based on the per
capita GDP after the deflator in 1978 (Zhang & Chen, 2015), the proportion of the urban
resident population to the total population (Yang et al., 2017), the proportion of the total highway mileage to the
land area of the province (Zhuo &
Zeng, 2018),
the proportion of the added value of the secondary industry to the GDP (Wang & Zhang, 2018), and the proportion of the
effective irrigation area to the sown area of crops (Gong, 2018a),
representing the disaster situation (Disas), economic development (Gdppc),
urbanization level (Citil), transportation convenience (Trans), the development
of the secondary industry (Indus) and irrigation level (Irrig). A total of 6
variables are used as the driving factors affecting the spatial and temporal
changes of agricultural TFP.


5. Empirical Results and Analysis


5.1. The Measurement and Timing
Analysis of China’s Agricultural TFP


Before measuring the TFP of agriculture, this paper
first analyzes the input-output data of provincial agricultural production from
1978 to 2020. The first two lines of Table 1 show
the annual agricultural input-output level in 1978 and 2020. The last six lines
show the agricultural input-output’s average annual growth rate in different
agricultural development stages. The total agricultural output value continued
to increase throughout the study period, with an average annual growth rate of
more than 4 %. Regarding input factors, the input of land, fertilizer, and
machinery has shown an increasing trend. Only the labor input has shown a
decreasing trend in individual stages. This is mainly due to the advancement of
urbanization and industrialization. The large-scale transfer of rural surplus
labor to the city has reduced the labor engaged in agricultural production.


Table 1. Input and output of
agricultural production.



 
  	
   

  
  	
   

  
  	
  Total
  Agricultural

  Output Value

  
  	
  Labour

  
  	
  Land

  
  	
  Fertilizer

  
  	
  Mechanics

  
 

 
  	
   

  
  	
   

  
  	
  Billion Yuan

  
  	
  Ten Thousand
  People

  
  	
  Hectares

  
  	
  10000 Tons

  
  	
  10000 Kilowatts

  
 

 
  	
  Annual Value

  
  	
  1978

  
  	
  1397

  
  	
  28318

  
  	
  146379

  
  	
  884

  
  	
  11749.9

  
 

 
  	
   

  
  	
  2020

  
  	
  137782.2

  
  	
  17715

  
  	
  167487

  
  	
  5250.7

  
  	
  105622.1

  
 

 
  	
  Average Annual
  Growth Rate

   

  
  	
  1978–1984

  
  	
  6.9%

  
  	
  2.1%

  
  	
  9.4%

  
  	
  11.8%

  
  	
  9.4%

  
 

 
  	
   

  
  	
  1985–1989

  
  	
  6.2%

  
  	
  −0.4%

  
  	
  7.4%

  
  	
  7.4%

  
  	
  7.4%

  
 

 
  	
   

  
  	
  1990–1993

  
  	
  5.5%

  
  	
  0.6%

  
  	
  3.2%

  
  	
  7.5%

  
  	
  3.2%

  
 

 
  	
   

  
  	
  1994–1998

  
  	
  7.6%

  
  	
  0.3%

  
  	
  5.6%

  
  	
  5.9%

  
  	
  5.6%

  
 

 
  	
   

  
  	
  1999–2003

  
  	
  4.7%

  
  	
  −0.7%

  
  	
  5.1%

  
  	
  1.3%

  
  	
  5.1%

  
 

 
  	
   

  
  	
  2004–2020

  
  	
  4.5%

  
  	
  −1.0%

  
  	
  3.6%

  
  	
  1.9%

  
  	
  3.6%

  
 




Note: According to Gong (2018a)’ s division of
agricultural production stages, China’s agricultural development since 1978 can
be divided into six stages, namely, the transition period from a collective
economy to a family-based agricultural system from 1978 to 1984, the dual-track
system period from 1985 to 1989, the in-depth reform stage of the joint
procurement and marketing system from 1990 to 1993, the tax and fee system
reform stage from 1994 to 1998, the comprehensive economic reform period of
rural development from 1999 to 2003, and the focus on the development period of
agriculture, rural areas, and farmers from 2004 to the present.


The agricultural TFP of 28 provinces for 42 years from
1979 to 2020 was calculated using the fixed effects SFA Malmquist model in
Stata software. It analyzes the development trend of China’s agricultural TFP
since 1979. Figure 1 shows the average
annual growth rate of China’s agricultural TFP. By observing the figure, it can
be found that the Malmquist productivity index calculated each year is greater
than 1, indicating that the TFP of China’s agriculture has shown a growing trend
in the past four decades. However, over time, the growth rate of agricultural
TFP gradually slowed down, especially since 1993, the average annual growth
rate of TFP began to decline, which also verified the previous research
conclusions, that is, from the 1990s, the growth rate of China’s agricultural
TFP slowed down (Chen et al.,
2008;
Zhou & Zhang, 2013).





Figure 1. Annual growth rate of
agricultural total factor productivity in China.


To further analyze the changing trend of China’s
agricultural TFP growth before and after the 1990s and the difference of
agricultural TFP in different regions, figure 2
lists the changing trend of agricultural TFP growth in three stages
(1979–2020,1979–1990 and 1991–2020) and three regions (eastern, central and
western). First, agricultural TFP growth in 1979–1990 was significantly higher
than in 1991–2020 and 1979–2020, further verifying the previous conclusions.
Although the growth rate of China’s agricultural TFP slowed down after the
1990s, it is still growing, which shows that a series of agricultural reforms
and agricultural support policies implemented since 1979 have effectively
promoted the improvement of agricultural TFP. Secondly, by comparing the growth
of agricultural TFP in the three regions of the Middle, East, and West, it can
be found that the Eastern region is the highest, which shows that the agricultural
technology level in the Eastern region has made significant progress, and
attaches great importance to scientific and technological innovation in the
process of agricultural production. The low growth of TFP in the central and
western regions shows that the above two regions rely too much on the initial
factor input in agricultural production. The role of agricultural science and
technology innovation in agricultural production is relatively small, and
agricultural production is still in a relatively extensive state.





Figure
2. Growth and changing
trend of agricultural total factor productivity in China.


The above analysis shows that China’s agricultural TFP
has been growing since 1979. What is the reason for the growth of TFP?
According to Equations (4), (5), and (6), the growth of TFP can be decomposed
into technological progress (TPCH) and changes in technical efficiency (TECH),
and the factor decomposition diagram of TFP growth since 1978 is obtained. It
can be seen from Figure 3 that the value of
technical progress (TPCH) is all greater than 1, and some values of Technical
Efficiency Change (TECH) are less than 1. This shows that the growth of China’s
agricultural total factor productivity mainly depends on the progress of agricultural
technology. In contrast, technical efficiency sometimes plays the opposite
role, which to some extent offsets the effect of the improvement of
agricultural technology level. Further analysis of the trend of technological
progress and technical efficiency changes before and after 1990 shows that
after the 1990s, the growth rate of technological progress began to slow down,
and the growth rate of technical efficiency showed a slow upward trend,
indicating that the impact of technical efficiency on agricultural total factor
productivity began to strengthen gradually.





Figure 3. Decomposition of China’s
agricultural total factor productivity growth from 1979 to 2020.


5.2. Spatial Correlation Analysis
of Agricultural TFP in China


To test whether there is a spatial correlation in the
TFP of agricultural production, Table 2 lists the global
Moran’s I calculated based on the geographical adjacency spatial weight matrix.
The results show that Moran’s I index from 1985 to 2020 is between 0.21 and
0.47. Both are significant at the 5 % significance level, indicating a spatial
correlation in the TFP of agriculture in various provinces and cities in China.
In addition, this spatial correlation is becoming increasingly obvious over
time. This phenomenon may be due to the flow of agricultural production factors
between regions, the promotion of agricultural technology extension projects,
and mechanical cross-regional operations (Gao & Song, 2014). Notably, the TFP of 1978–1984 did not pass the
global correlation test. Further, it is necessary to examine the local spatial
correlation of the above years through local Moran’s I. Table 3 lists the LISA clustering results for insignificant
years. Table 3 shows that although
there was no global correlation between 1979 and 1984, there is a specific
regional accumulation in the local area, reflecting the imbalance of
agricultural development in China to a certain extent. This paper also uses the
economic distance spatial weight matrix and the geospatial distance weight
matrix to measure the spatial correlation of agricultural TFP in each province
and city. The results are very similar to Table 2
and Table 3. Due to the length of
the article, it is not shown here.


Table 2. Moran’s I index of
agricultural total factor productivity from 1979 to 2020.



 
  	
  Year

  
  	
  Moran’s I

  
  	
  P-value

  
  	
  Year

  
  	
  Moran’s I

  
  	
  P-value

  
 

 
  	
  1979

  
  	
  0.087

  
  	
  0.314

  
  	
  2000

  
  	
  0.400

  
  	
  0.000

  
 

 
  	
  1980

  
  	
  0.105

  
  	
  0.238

  
  	
  2001

  
  	
  0.427

  
  	
  0.000

  
 

 
  	
  1981

  
  	
  0.073

  
  	
  0.336

  
  	
  2002

  
  	
  0.441

  
  	
  0.000

  
 

 
  	
  1982

  
  	
  0.051

  
  	
  0.465

  
  	
  2003

  
  	
  0.447

  
  	
  0.000

  
 

 
  	
  1983

  
  	
  0.112

  
  	
  0.205

  
  	
  2004

  
  	
  0.449

  
  	
  0.000

  
 

 
  	
  1984

  
  	
  0.150

  
  	
  0.126

  
  	
  2005

  
  	
  0.454

  
  	
  0.000

  
 

 
  	
  1985

  
  	
  0.210

  
  	
  0.039

  
  	
  2006

  
  	
  0.454

  
  	
  0.000

  
 

 
  	
  1986

  
  	
  0.233

  
  	
  0.025

  
  	
  2007

  
  	
  0.460

  
  	
  0.000

  
 

 
  	
  1987

  
  	
  0.239

  
  	
  0.022

  
  	
  2008

  
  	
  0.464

  
  	
  0.000

  
 

 
  	
  1988

  
  	
  0.271

  
  	
  0.012

  
  	
  2009

  
  	
  0.466

  
  	
  0.000

  
 

 
  	
  1989

  
  	
  0.289

  
  	
  0.008

  
  	
  2010

  
  	
  0.470

  
  	
  0.000

  
 

 
  	
  1990

  
  	
  0.329

  
  	
  0.003

  
  	
  2011

  
  	
  0.473

  
  	
  0.000

  
 

 
  	
  1991

  
  	
  0.305

  
  	
  0.005

  
  	
  2012

  
  	
  0.472

  
  	
  0.000

  
 

 
  	
  1992

  
  	
  0.311

  
  	
  0.005

  
  	
  2013

  
  	
  0.478

  
  	
  0.000

  
 

 
  	
  1993

  
  	
  0.343

  
  	
  0.002

  
  	
  2014

  
  	
  0.483

  
  	
  0.000

  
 

 
  	
  1994

  
  	
  0.351

  
  	
  0.002

  
  	
  2015

  
  	
  0.486

  
  	
  0.000

  
 

 
  	
  1995

  
  	
  0.375

  
  	
  0.001

  
  	
  2016

  
  	
  0.482

  
  	
  0.000

  
 

 
  	
  1996

  
  	
  0.384

  
  	
  0.001

  
  	
  2017

  
  	
  0.470

  
  	
  0.000

  
 

 
  	
  1997

  
  	
  0.376

  
  	
  0.001

  
  	
  2018

  
  	
  0.479

  
  	
  0.000

  
 

 
  	
  1998

  
  	
  0.382

  
  	
  0.001

  
  	
  2019

  
  	
  0.483

  
  	
  0.000

  
 

 
  	
  1999

  
  	
  0.366

  
  	
  0.001

  
  	
  2020

  
  	
  0.476

  
  	
  0.000

  
 




Table 3. LISA clustering results
in insignificant years.



 
  	
   

  
  	
  H-H

  
  	
  L-L

  
  	
  H-L

  
  	
  L-H

  
 

 
  	
  1979

  
  	
   

  
  	
  Shanxi, Shaanxi

  
  	
  Sichuan

  
  	
   

  
 

 
  	
  1980

  
  	
   

  
  	
  Shaanxi, Gansu, Ningxia

  
  	
  Sichuan, Xinjiang

  
  	
   

  
 

 
  	
  1981

  
  	
   

  
  	
  Shanxi, Shaanxi, Ningxia

  
  	
  Jilin

  
  	
  NeiMongol

  
 

 
  	
  1982

  
  	
   

  
  	
  Shanxi., Shaanxi, Gansu, Ningxia

  
  	
  Jilin, Sichuan, Xinjiang

  
  	
  NeiMongol

  
 

 
  	
  1983

  
  	
   

  
  	
  NeiMongol, Shaanxi, Gansu,
  Ningxia

  
  	
  Xinjiang

  
  	
   

  
 

 
  	
  1984

  
  	
  Tianjin

  
  	
  Shanxi, NeiMongol, Shaanxi,
  Gansu, Ningxia

  
  	
  Sichuan, Xinjiang

  
  	
   

  
 




Note: H-H represents high value
surrounded by high value, L-L represents low value surrounded by low value, H-L
represents high value surrounded by low value, and L-H represents low value
surrounded by high value.


5.3.
Convergence Analysis of Agricultural Total Factor Productivity in China


For the traditional -convergence model, the Hausman
test is first carried out to determine that the fixed effect should be selected
to analyze the convergence of China’s agricultural TFP. As mentioned, China’s
agricultural TFP has a spatial correlation. Based on three spatial econometric
models, three spatial -convergence models (SAR spatial -convergence model, SEM spatial -convergence model, and SDM spatial
-convergence model) are
constructed. According to the Wald test, the SDM spatial -convergence model is optimal, and
the spatial Hausman test results still support the fixed effect.


It can be seen from Table 4
that the coefficients of  in
all models are significantly negative, which indicates that there is an
apparent convergence trend in China’s agricultural total factor productivity
and the gap between regional agricultural total factor productivity is
shrinking. Through comparing the traditional absolute convergence and
conditional convergence, the study found that the convergence speed of
conditional convergence (0.065) is greater than that of absolute convergence
(0.049). The same conclusion can be drawn by comparing spatial absolute and
spatial conditional convergence. That is, the convergence speed of spatial
conditional convergence (0.088) is greater than that of spatial absolute
convergence (0.074). This is because conditional convergence considers the
differences in production factors between regions, shortens the period of
convergence, and makes the convergence test closer to reality; Spatial factors
have the effect of accelerating convergence. By comparing the convergence speed
of the three models of spatial absolute β-convergence and spatial conditional
β-convergence, it can be found that the convergence speed of SAR, SEM, and SDM
with spatial conditional β-convergence is significantly faster than that of
spatial absolute β-convergence. This phenomenon may be because the spatial
spillover effect or diffusion effect narrows the inter-regional agricultural
production gap, thus accelerating the convergence speed. For the control
variables, the direction and significance level of the influence of the
coefficients of the traditional convergence model and the spatial convergence
model on the TFP of agriculture is the same. There are some differences in the
size of the coefficients. Because the control variables are not the focus of
this study, they are not explicitly analyzed.


Table 4. The β convergence of
agricultural total factor productivity in China.



 
  	
  Variable

  
  	
  Traditional Absolute

  
  	
  Spatial Absolute β-convergence

  
  	
  Traditional Conditional

  
  	
  Spatial Conditional β-convergence

  
 

 
  	
  -convergence

  
  	
  SAR

  
  	
  SEM

  
  	
  SDM

  
  	
  -convergence

  
  	
  SAR

  
  	
  SEM

  
  	
  SDM

  
 

 
  	
  

  
  	
  −0.048***

  
  	
  -0.047***

  
  	
  -0.052***

  
  	
  -0.071***

  
  	
  −0.063***

  
  	
  -0.061***

  
  	
  -0.065***

  
  	
  -0.077***

  
 

 
  	
   

  
  	
  (0.011)

  
  	
  (0.005)

  
  	
  (0.005)

  
  	
  (0.007)

  
  	
  (0.015)

  
  	
  (0.006)

  
  	
  (0.006)

  
  	
  (0.007)

  
 

 
  	
  Trans

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  0.010

  
  	
  0.010***

  
  	
  0.010**

  
  	
  −0.006

  
 

 
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  (0.006)

  
  	
  (0.004)

  
  	
  (0.004)

  
  	
  (0.006)

  
 

 
  	
  Citil

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  0.003

  
  	
  0.003

  
  	
  0.003

  
  	
  0.004

  
 

 
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  (0.003)

  
  	
  (0.004)

  
  	
  (0.004)

  
  	
  (0.004)

  
 

 
  	
  Irrig

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  0.018

  
  	
  0.019

  
  	
  0.019

  
  	
  0.012

  
 

 
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  (0.020)

  
  	
  (0.013)

  
  	
  (0.013)

  
  	
  (0.014)

  
 

 
  	
  Disas

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  0.001

  
  	
  0.001

  
  	
  0.001

  
  	
  0.001

  
 

 
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  (0.006)

  
  	
  (0.005)

  
  	
  (0.005)

  
  	
  (0.005)

  
 

 
  	
  Indus

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  −0.016

  
  	
  −0.016

  
  	
  −0.019

  
  	
  −0.030*

  
 

 
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  (0.026)

  
  	
  (0.015)

  
  	
  (0.015)

  
  	
  (0.016)

  
 

 
  	
  

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  0.023***

  
  	
  0.022***

  
  	
  0.023***

  
  	
  0.022***

  
 

 
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
   

  
  	
  (0.006)

  
  	
  (0.005)

  
  	
  (0.005)

  
  	
  (0.005)

  
 

 
  	
  Constant

  
  	
  0.114***

  
  	
   

  
  	
   

  
  	
   

  
  	
  −0.048

  
  	
   

  
  	
   

  
  	
   

  
 

 
  	
   

  
  	
  (0.022)

  
  	
   

  
  	
   

  
  	
   

  
  	
  (0.036)

  
  	
   

  
  	
   

  
  	
   

  
 

 
  	
  Rho

  
  	
   

  
  	
  0.104**

  
  	
  0.145***

  
  	
  0.145***

  
  	
   

  
  	
  0.098**

  
  	
  0.129***

  
  	
  0.140***

  
 

 
  	
   

  
  	
   

  
  	
  (0.040)

  
  	
  (0.041)

  
  	
  (0.041)

  
  	
   

  
  	
  (0.040)

  
  	
  (0.041)

  
  	
  (0.041)

  
 

 
  	
  R-squared

  
  	
  0.468

  
  	
  0.154

  
  	
  0.146

  
  	
  0.031

  
  	
  0.484

  
  	
  0.095

  
  	
  0.095

  
  	
  0.188

  
 

 
  	
  Convergence Rate

   

  
  	
  0.049

  
  	
  0.048

  
  	
  0.053

  
  	
  0.074

  
  	
  0.065

  
  	
  0.063

  
  	
  0.067

  
  	
  0.080

  
 

 
  	
  Fixed Effect

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
 




Based on analyzing the
influence of spatial effect on the convergence of China’s agricultural total
factor productivity, the following will further study the spatial convergence
characteristics of China’s agricultural total factor productivity by period (before
and after the 1990s), by region (eastern, central and western) and by using
different spatial weight matrices (geographical adjacency spatial weight matrix
, economic distance spatial
weight matrix  and spatial
distance weight matrix ).


Table 5 reports the regression
results of the SDM conditional -convergence model with fixed
effects in different periods. On the whole, the results of each convergence
model with different spatial weight matrices in different periods show that
China’s agricultural TFP has the characteristics of convergence, which also
shows that the convergence trend of China’s agricultural TFP is robust; The
convergence rate of China’s agricultural TFP shows a decreasing trend. The
convergence rate between 1979–1990 is significantly higher than between
1991–2020. This may be due to the lack of production resources in the early
stage of reform and opening up. The agricultural production conditions in
various regions vary considerably. With the reform and opening up, the flow
rate of agricultural production factors between regions continues to increase.
Agricultural production in various regions has released great potential, and
inefficient regions are growing faster. However, with the deepening of the
reform, the gap in resource endowments between regions has gradually narrowed,
the conditions for agricultural production have been continuously improved, and
agriculture has been continuously transformed from ‘quantity growth’ to
‘quality growth’, which has slowed down the convergence rate to a certain
extent.


Table 5. Conditional β
convergence of agricultural total factor productivity in different periods
based on SDM. 



 
  	
  Variable

  
  	
  1979–1990

  
  	
  1991–2020

  
  	
  1979–2020

  
 

 
  	
       

  
  	
       

  
  	
       

  
  	
       

  
  	
       

  
  	
        

  
  	
       

  
  	
       

  
  	
       

  
 

 
  	
  

  
  	
  −0.377***

  
  	
  −0.415***

  
  	
  −0.338***

  
  	
  −0.032***

  
  	
  −0.030***

  
  	
  −0.025***

  
  	
  −0.077***

  
  	
  −0.067***

  
  	
  −0.063***

  
 

 
  	
   

  
  	
  (0.025)

  
  	
  (0.029)

  
  	
  (0.026)

  
  	
  (0.008)

  
  	
  (0.007)

  
  	
  (0.007)

  
  	
  (0.007)

  
  	
  (0.007)

  
  	
  (0.006)

  
 

 
  	
  Rho

  
  	
  0.161**

  
  	
  −0.159**

  
  	
  0.120

  
  	
  0.283***

  
  	
  −0.128**

  
  	
  0.252**

  
  	
  0.140***

  
  	
  −0.132***

  
  	
  0.182*

  
 

 
  	
   

  
  	
  (0.071)

  
  	
  (0.077)

  
  	
  (0.183)

  
  	
  (0.048)

  
  	
  (0.054)

  
  	
  (0.107)

  
  	
  (0.041)

  
  	
  (0.045)

  
  	
  (0.094)

  
 

 
  	
  R-squared

  
  	
  0.260

  
  	
  0.214

  
  	
  0.161

  
  	
  0.059

  
  	
  0.188

  
  	
  0.217

  
  	
  0.188

  
  	
  0.159

  
  	
  0.025

  
 

 
  	
  Convergence
  Rate

   

  
  	
  0.473

  
  	
  0.536

  
  	
  0.412

  
  	
  0.033

  
  	
  0.030

  
  	
  0.025

  
  	
  0.080

  
  	
  0.069

  
  	
  0.065

  
 

 
  	
  Control

   

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
 

 
  	
  Fixed
  Effect

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
 




Note: The control variables are the
disaster situation (Disas), economic development (Gdppc), urbanization level
(Citil), transportation convenience (Trans), secondary industry development
(Indus), and irrigation level (Irrig) mentioned above.


Table 6 reports the regression
results of the conditional β-convergence model of SDM with fixed effects in
different regions. Overall, the convergence model results of different regions
and spatial weight matrices show that China’s agricultural TFP has convergence
characteristics. The convergence speed of China’s agricultural TFP shows a
spatial distribution pattern decreasing in the western, eastern, and central
regions. The western region has the fastest convergence rate. The possible
reason is that the western region is rich in agricultural resources. Still, the
social and economic development level is low, and the level of agricultural
production technology is relatively low. However, with the advancement of the
Western development strategy, the Western region has developed rapidly. The
acceleration of inter-regional resource and technology flow has shortened the
convergence cycle of agricultural TFP. The central region is primarily the
prominent grain-producing area, the agricultural production conditions are relatively
perfect, and the overall level of agricultural production technology is
relatively high. Although the eastern region is economically developed,
agricultural production is not its primary goal. The marginal effect of
technology and capital investment in the central and eastern regions is
decreasing, and the convergence rate of agricultural TFP is slow.


Table 6. Conditional β
convergence of agricultural total factor productivity in different areas based
on SDM.



 
  	
  Variable

  
  	
  Eastern

  
  	
  Central

  
  	
  Western

  
 

 
  	
  

  
  	
  

  
  	
  

  
  	
  

  
  	
  

  
  	
  

  
  	
  

  
  	
  

  
  	
  

  
 

 
  	
  

  
  	
  −0.125***

  
  	
  −0.174***

  
  	
  −0.093***

  
  	
  −0.098***

  
  	
  −0.172***

  
  	
  −0.145***

  
  	
  −0.192***

  
  	
  −0.096***

  
  	
  −0.282***

  
 

 
  	
   

  
  	
  (0.022)

  
  	
  (0.027)

  
  	
  (0.025)

  
  	
  (0.022)

  
  	
  (0.029)

  
  	
  (0.029)

  
  	
  (0.017)

  
  	
  (0.013)

  
  	
  (0.025)

  
 

 
  	
  Rho

  
  	
  −0.094

  
  	
  −0.761***

  
  	
  −0.569***

  
  	
  −0.288***

  
  	
  −0.230***

  
  	
  −0.191**

  
  	
  −0.487***

  
  	
  −0.221***

  
  	
  −0.932***

  
 

 
  	
   

  
  	
  (0.061)

  
  	
  (0.083)

  
  	
  (0.118)

  
  	
  (0.048)

  
  	
  (0.079)

  
  	
  (0.088)

  
  	
  (0.076)

  
  	
  (0.069)

  
  	
  (0.148)

  
 

 
  	
  R-squared

  
  	
  0.350

  
  	
  0.433

  
  	
  0.367

  
  	
  0.217

  
  	
  0.161

  
  	
  0.267

  
  	
  0.207

  
  	
  0.099

  
  	
  0.232

  
 

 
  	
  Convergence Rate

   

  
  	
  0.134

  
  	
  0.191

  
  	
  0.098

  
  	
  0.103

  
  	
  0.189

  
  	
  0.157

  
  	
  0.213

  
  	
  0.101

  
  	
  0.331

  
 

 
  	
  Control

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
 

 
  	
  Fixed Effect

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
  	
  Yes

  
 




Note: The control variables are the
disaster situation (Disas), economic development (Gdppc), urbanization level
(Citil), transportation convenience (Trans), secondary industry development
(Indus), and irrigation level (Irrig) mentioned above. 


6. Conclusions and Policy
Recommendations


With the improvement of China’s agricultural market
and the continuous improvement of regional openness and communication, the flow
of agricultural production factors among regions is becoming increasingly
frequent. Spatial factors have become a non-negligible factor affecting the
change in China’s agricultural TFP. This paper takes the provincial panel data
from 1978 to 2020 as the research object, uses the fixed effect SFA-Malmquist
model to measure each province and city’s agricultural TFP, and determines the
spatial correlation of China’s agricultural TFP through Moran’s I. On this
basis, the spatial factors are included in the β-convergence model. The spatial
convergence characteristics of China’s agricultural TFP are analyzed in
different periods and regions. Through analysis, the following main conclusions
are obtained:


First, since 1978, the TFP of China’s agriculture has
shown a growing trend, but its growth rate has gradually slowed over time. This
conclusion is consistent with the research results of Chen et al., (2008) and Zhou and Zhang (2013).
Comparing the growth of agricultural TFP in the central, eastern, and western
regions, it can be found that the eastern region has the highest TFP growth. In
contrast, the central and western regions have lower TFP growth. The growth of
agricultural TFP in China mainly depends on the progress of agricultural
technology. Still, the impact of technical efficiency on agricultural TFP has
gradually strengthened.


Second, China’s agricultural TFP has significant
spatial correlation and spatial convergence characteristics. The differences in
agricultural TFP in various regions are shrinking over time, and the spatial
spillover effect significantly shortens the convergence process. By studying
the convergence process in different periods, it is found that the convergence
speed between 1979 and 1990 is significantly higher than that between 1991 and
2020. By studying the convergence process in different regions, it is found
that the convergence speed of China’s agricultural TFP shows a spatial
distribution pattern of decreasing in the west, east, and middle.


Practical implications of this research include:


First, China’s agricultural TFP still has a lot of
room for improvement. In the future, the use of digital technology, advanced
equipment, and other means will continue to improve technical efficiency to
achieve the growth of China’s agricultural TFP. In recent years, digital
technology and digital equipment have been gradually applied to the
agricultural field, and smart agriculture and digital agriculture have also
been continuously promoted everywhere, which will effectively improve China’s
agricultural TFP. In the future, efforts should be made to continuously promote
digital technology, advanced equipment, and other technologies in the
agricultural field. 


Second, while strengthening its own agricultural
production, the regional government should also take complete account of the
advantages of agricultural resources in neighboring regions, strengthen
cooperation and exchanges between regions, and constantly play the spillover
effect of regions with high agricultural TFP. This paper has proved that
China’s agricultural TFP has significant spatial agglomeration specificity and
spatial effect, which benefits from the flow of production factors, technology,
personnel, etc., among regions. In the future, based on constantly
strengthening cooperation and exchange between regions, we should give full
play to the role of digital technology, break down barriers between regions,
and promote the entire flow of technology, personnel, and factors to achieve
the goal of jointly improving agricultural TFP.
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