
        
            
                
            
        

    



Research
on Progress of Forest Fire Monitoring with Satellite Remote Sensing


Ying
Zheng[image: 信封 纯色填充], Gui Zhang *[image: 信封 纯色填充], Sanqing Tan[image: 信封 纯色填充]
and Lanbo Feng[image: 信封 纯色填充]


College of Forestry,
Central South University of Forestry and Technology, Changsha 410000, China


     *Author
to whom correspondence should be addressed.


A&R 2023, Vol. 1, No. 2, 0008; https://doi.org/10.59978/ar01020008


Received:
27 July 2023; Revised: 7 August 2023; Accepted: 25 August 2023; Published: 4
September 2023




Copyright © 2023

This is an Open Access article distributed under the terms of the Creative
Commons Attribution 4.0 International Public License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)





Abstract: With satellite remote
sensing technology blooming, satellite remote sensing has become a common tool
to detect forest fires, and played an important role in forest fire monitoring.
This paper sort the research status and progress on satellite remote sensing
monitoring for forest fires to provide directions and insights for subsequent
research and applications. Through reviewing the literature on satellite remote
sensing monitoring for forest fires, we present satellites and sensors for
forest fire monitoring, describe forest fire monitoring methods through
brightness temperature detection and smoke detection, and summarize current
problems of satellite remote sensing monitoring of forest fires. Despite forest
fire satellite remote sensing monitoring algorithms are becoming increasingly
mature, it is not without problems such as slow migration of cloud detection
algorithms, difficulties in unifying spatial and temporal characteristics, and
difficulties in detecting small fires and low-temperature fires. Finally, in
response to the problems identified, we list some recommendations with a view
to providing useful references for future research on forest fire monitoring
with satellite remote sensing.
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1. Introduction


The introduction should briefly place the study in a
broad context and highlight why it is important. It should define the purpose
of the work and its significance. The current state of the research field
should be carefully reviewed and key publications cited. Please highlight
controversial and diverging hypotheses when necessary. Finally, briefly mention
the main aim of the work and highlight the principal conclusions. As far as
possible, please keep the introduction comprehensible to scientists outside your
particular field of research. Forest
fire is a worldwide natural disaster. As it can destroy forest resources and
cause global environmental pollution, governments are paying more attention to
it. Forest fires occur randomly and unexpectedly, therefore timely monitoring
of forest fires helps to reduce the loss caused by them.


With the vigorous development of satellite remote
sensing technology, satellite remote sensing has become a frequently used tool
for forest fire monitoring. When monitoring forest fires, relying on “low and
medium altitude” tools is not only high-cost and technically difficult, but
leaves blind spots for forest fire monitoring (Shu et al., 2005). However, satellite sensors can provide information
with different spatial resolutions and different spectra on a global scale (Chuvieco et al., 2020), with the advantages of large
monitoring range, short response time and strong anti-interference ability.
They can effectively make up for the shortcomings, regarding the small
monitoring range, poor stability and high cost, of “low altitude” cameras in
forest areas (Barmpoutis et
al., 2020;
Wu et al., 2020), and solve problems of being
subject to air control, weather conditions and short range of “mid-altitude”
Unmanned Aerial Vehicles (UAVs) (Howard et al.,
2018).
Thus, satellite sensors meet the need for timely monitoring of forest fires in
large areas (Qin et al., 2015). There are currently
two main ways of using remote sensing technology for forest fire monitoring.
One is to obtain the brightness temperature information through the infrared
band of satellite remote sensing. The flames produced by forest fires have distinctive
radiative characteristics, contrasting markedly with the background radiation
of surrounding areas (Sun et al.,
2020). The other is to detect
forest fire smoke produced during forest fires. which can detect forest fires
earlier than brightness temperature detection. In the early stages of forest
fires, the incomplete combustion of combustible materials can produce large
amounts of smoke (Zheng et al.,
2023),
which can help to detect forest fires earlier than monitoring through
brightness temperature detection.


This paper reviews the progress of research on
satellite remote sensing for forest fire monitoring. We begin with an overview
of the development and properties comparison of meteorological satellites and
sensors commonly used for forest fire monitoring (Section 2). We then compared
and analyzed methods of monitoring forest fires using brightness temperature
detection and smoke detection (Section 3). Finally, we discuss the existing
problems and future directions of satellite remote sensing monitoring for forest
fires (Section 4). The above studies can provide useful references for the
selection of satellites for forest fire monitoring, the adoption of monitoring
methods, and the improvement of forest fire monitoring accuracy to point the
way to further research.


2. Overview and Application of
Meteorological Satellites and Sensors for Forest Fire Monitoring


2.1.
Overview of Meteorological Satellites and Sensors for Forest Fire Monitoring


In recent years, with the advancement of remote
sensing technology, the launch of a large number of remote sensing satellites
and the low cost of usage, scholars worldwide have studied satellite remote
sensing monitoring for forest fires.


At present, domestic and foreign mainly use
meteorological satellites to monitor forest fires. According to their orbits,
meteorological satellites are divided into two main categories: Polar Orbit
Meteorological Satellite and Geostationary Meteorological Satellite. The
capabilities’ comparison of the two satellites is shown in Table 1. The Geostationary Meteorological Satellite, also
known as Geosynchronous Satellite, usually orbits at an altitude of around
36,000 km, matching the speed of the Earth’s rotation. The Geostationary
Meteorological Satellites currently in orbit include China’s Fengyun-2 (FY-2)
and Fengyun-4 (FY-4), the US GEOS series, Japan’s Himawari-9, Korea’s
GEO-KOMPSAT-2A(GK2A), etc. The Polar Orbit Meteorological Satellite, also known
as Sun-synchronous Orbit Satellite, usually orbits at an altitude of around 500
to 800 km, travelling along a near-polar orbit between the North Pole and the
South Pole. Due to the large inclination angle of the orbit of such satellite,
it can only make earth observations during each fly-by. The Polar Orbit
Meteorological Satellites presently in orbit include China’s Fengyun-3 (FY-3),
the US NOAA and the European Metop series, etc.


Table
1. The capability
comparison between Polar Orbit Meteorological Satellite and Geostationary
Meteorological Satellite.



 
  	
  Capability

  
  	
  Geostationary Meteorological
  Satellite

  
  	
  Polar Orbit Meteorological
  Satellite

  
 

 
  	
  Providing Continuous Observation
  Data

  
  	
  √

  
  	
  ×

  
 

 
  	
  Temporal Resolution

  
  	
  High

  
  	
  Low

  
 

 
  	
  Spatial Resolution

  
  	
  Low

  
  	
  High

  
 

 
  	
  Enabling Continuous Monitoring
  of the Same Area over a Long Period

  
  	
  √

  
  	
  ×

  
 

 
  	
  Orbital Position

  
  	
  Settled

  
  	
  Unsettled

  
 

 
  	
  Orbital Period

  
  	
  Long

  
  	
  Short

  
 




Satellite systems are based on sensors (Rafik et al., 2020). acquire images at multiple
spatial and temporal resolutions by carrying different sensors. Satellites
acquire images with multiple spatial and temporal resolutions by carrying
different sensors. Sensors on board Geostationary Meteorological Satellites that
are commonly used for forest fire monitoring include Advanced Himawari Imager
(AHI), Advanced Baseline Imager (ABI), Advanced Geostationary Radiation Imager
(AGRI), etc. Sensors on board Polar Orbit Meteorological Satellite include
Advanced Along-track Scanning Radiometer (ATSR), Advanced Very High Resolution
Radiometer (AVHRR), Moderate-resolution Imaging Spectroradiometer (MODIS),
Visible Infrared Imaging Radiometer (VIIRS), etc.


The world’s first meteorological satellite is the US
TIROS-1, which was launched in 1960 and transmitted back the first satellite
cloud images (Lv et al., 2003). From 1975-2010, the
US launched four generations of the GOES series geostationary satellites. The
temporal resolution, number of channels and imaging speed of the satellites
have been gradually increased, and monitoring capabilities have been enhanced (Fang, 2014). Meanwhile, the third generation
US Polar Orbit Meteorological Satellite, NOAA, went into operation in 1978,
equipped with the AVHRR (Lu & Gu,
2016).
In 2011, the SNPP satellite was successfully launched, primarily carrying the
VIIRS with operational microlight detection capability. 


The development of meteorological satellites in Europe
began with the first Geostationary Meteorological Satellite Meteosat-1,
launched in 1997. Europe’s first Polar Orbit Meteorological Satellite, Metop-A,
was launched in 2006. Despite its late start, the satellite had a high
technological starting point, with rapid advances in its imaging quality and
the Infrared Atmospheric Sounding Interferometer (IASI) on board (Lu & Gu, 2016).


With the improvement of satellite remote sensing
technology, Japan launched the Geostationary Meteorological Satellite
Himawari-8 in 2014, equipped with the AHI, which is mainly used for the
monitoring of natural disasters (He et al.,
2020).
And then the Himawari-9 was launched in 2016 and was to be in service in 2022.


China is one of the few countries in the world with
both Geostationary Meteorological Satellites and Polar Orbit Meteorological
Satellites (Tang et al., 2016). China has launched
eight Polar Orbit Meteorological Satellites and nine Geostationary
Meteorological Satellites, completing the transformation of meteorological
satellites from experimental applications to operational services (Sun et al., 2020). In addition, China’s
High-resolution Earth Observation System was started at 2010. And GF-4 is
China’s first relatively high-resolution remote sensing satellite (Sun et al., 2020).


2.2.
Applications of Meteorological Satellites and Sensors for Forest Fire
Monitoring


As early as the 1980s, techies began being abuzz about
research on forest fire monitoring using remote sensing technologies. With the
advantages of the vast synchronous observation area, broad detection band and
rapid sampling time, the AVHRR sensor equipped on NOAA satellite (NOAA/AVHRR),
since its successful launch in 1978, has become the main data source for
domestic and international scholars using satellites to monitor forest fires.
Flannigan and Haar attempted to use NOAA/AVHRR to monitor the forest fire in
north-central Alberta in June 1982. However, experiment results indicated that
the satellite’s visual field is susceptible to clouds and smoke, making it
difficult to monitor forest fires (Flannigan & Haar, 1986). In 1996, Yi et al.
conducted a simulation experiment based on NOAA/AVHRR data for the southwest
forest of China, where forest fires occurred frequently and were difficult to
monitor, and their results were basically at a practical level (Yi et al., 1996). In 1997, Pozo et al. compared
forest fire information in southeastern Spain obtained by AVHRR Band 3 and 4,
with real information of forest fires provided by the Andalusian Regional
Government Environmental Directorate (Pozo et al.,
1997).
They verified the advantages of using remote sensing techniques for forest fire
monitoring in forests containing complex features that are difficult to monitor
fires by other tools. In 2012, to eliminate fire signal noise due to solar
reflections, He et al. introduced a new test to filter forest fire detection
results based on the 2004 mid-infrared band data of NOAA/AVHRR, reducing the
number of false fire detections by 27.1% (He & Li, 2012). During this period, the accuracy of forest fire
monitoring using remote sensing still needed to be improved, but the greater
value of forest fire monitoring using remote sensing technology was initially
confirmed.


At the beginning of the 21st century, the MODIS sensor
began collecting remote sensing information as part of NASA’s Earth Observing
System (EOS) in 1999 on board the Terra satellite and in 2002 on board the Aqua
satellite. MODIS sensor has specific bands and fire products for fire
monitoring and has therefore become a research hotspot in the field of remote
sensing monitoring for forest fires during this period. In 2002, Justice, a
professor of the University of Maryland, and Kufuman, a staff of Goddard Space
Flight Center, led a research team to conduct a simulation experiment on forest
fire monitoring in African forests using MODIS data, and validated the results
of the simulation experiment using the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) data (Justice et
al., 2002). In 2003, Giglio et
al., members of the above research team, tested the effectiveness of MODIS data
for forest fire detection and found that MODIS data were subject to
interference from water et al. resulting in high false alarm rates for forest
fire monitoring and difficulties in detecting small or low-temperature forest
fires (Giglio et al., 2003). In 2007, they used
MODIS data to compensate for the limitations of the Visible and Infrared
Scanners in detecting forest fires in tropical and subtropical regions due to
differences between day and night (Giglio, 2007). In 2016, Giglio et
al. studied the 6th Version of MODIS data (collection 6) compiled by NASA,
which improved the forest fire detection performance of MODIS by reducing false
alarms caused by small bare land and missed alarms caused by thick smoke cover
occurred in Version 5 data (Giglio et al.,
2016).
In 2004, Qin et al. detected forest fires in China, with an accuracy of 80%,
based on band characteristics of MODIS (Qin & Yi, 2004).
Furthermore, scholars collected information from higher spatial resolution
sensors to validate the performance of MODIS for forest fire monitoring. In
2008, Schroeder et al. analyzed the MODIS fire detection product MOD14 using
remote sensing imagery collected from the ASTER sensor and ETM+ sensor with the
spatial resolution of 30m and showed that MODIS has difficulty detecting fires
under the tree canopies (Schroeder et
al., 2008).
During this period, the complex environmental background of forests had a
greater impact on forest fire monitoring using MODIS and required reliability
verification through extensive experiments. But the feasibility and prospect of
MODIS for forest fire monitoring was confirmed. Until 2019, MODIS was still
used as an important tool for forest fire monitoring, for example, Ba et al.
used MODIS images for scene classification to detect early forest fires (Ba et al., 2019).


With the launch of more remote sensing satellites and
sensors, satellites and sensors for monitoring forest fires tend to be
diversified. In 2008, Giglio et al. used data from the ASTER sensor, carried on
the Terra satellite, to detect the forest fire radiative power (FRP) to measure
the forest fire intensity (Giglio et al.,
2008).
In 2011, He et al. combined data from the same temporal phase of ASTER and
MODIS for forest fire detection to eliminate the effects of solar contamination
and thermal-path-radiance, improving the accuracy of forest fire detection, but
with a higher rate of detecting errors in deforested areas (He & Li, 2011). European ATSR sensor, onboard
ERS satellites, provides multi-angle, near real-time thermal infrared
measurement information for forest fire monitoring (Arino et al., 2012).
In 2012, Arino et al. analyzed the time series of night fires provided by ATSR
and verified that the ATSR data correlated well with MODIS data (Arino et al., 2012). As the Sea and Land Surface
Temperature Instrument (SLSTR) sensor on the Sentinel-3 has similar
characteristics to the ATSR and has a wider scanning area, Arino et al.
proposed the use of the SLSTR as the supplement to the night fire information
collected from ATSR and MODIS to address information saturation during the day (Arino et al., 2012). In 2012, Wooster et al. developed
and tested a theoretical forest fire detection algorithm for SLSTR using MODIS
and ASTER data and confirmed its high detection accuracy for small or
low-temperature forest fires (Wooster et
al., 2012).
However, this experiment lacked validation using real SLSTR images. With the
launch of the Sentinel-3 satellite with the SLSTR sensor in 2014, Xu et al.
collected real images from SLSTR in 2020 to complement and update previous
forest fire monitoring data and compared them with fire products from MODIS and
VIIRS (Xu et al., 2020). Furthermore, in 2021, they
confirmed that the F1 Band of SLSTR is of great application for forest fire
detection (Xu et al., 2021). And they predicted
that data from Sentinel-3/SLSTR could become the main source for midday and
night forest fire detection in the future.


In 2011, the first VIIRS sensor was successfully
launched on board the SNPP satellite, carrying two sets of independent
multispectral Bands and providing images of global coverage. In 2014, Schroeder
et al. developed a fire detection algorithm using VIIRS, which has superior
mapping capabilities to MODIS (Schroeder et
al., 2014).
In 2017, Zhang et al. jointly used I-band at a spatial resolution of 375 m and
M-band of 750 m from VIIRS to detect fire and its radiated power (FRP) for the
first time, and were able to effectively detect small fires (Zhang et al., 2017). The Chinese GF-4 satellite has
high temporal resolution and moderate spatial resolution, making it suitable
for high-frequency forest fire monitoring. In 2021, Zhou et al. discovered that
the Infrared Spectrum (IRS) sensor carried by the GF-4 has a band that is
sensitive to forest fires. And they used this band for spatial alignment with
MODIS and carried out forest fire monitoring experiments at Qinghai Lake and
Siling Lake, obtaining a high degree of radiometric calibration agreement (Zhou et al., 2021). In 2022, Zhang et al. used data
from the Panchromatic and Multispectral (PMS) sensor and IRS sensor carried by
GF-4 to eliminate high-temperature anomalies when forest fires were not
occurring, and used MODIS data to verify feasibility (Zhang et al., 2022). During this period, greater progress was made in
forest fire monitoring using new satellites and sensors.


To achieve real-time monitoring of forest fires and
improve the accuracy, scholars at home and abroad have devoted to research on
multi-source satellite remote sensing monitoring for forest fires. In 2022,
Tian et al. considered that remote sensing data from a single source could not
meet the needs of forest fire monitoring, thus they combined Planet,
Sentinel-2, MODIS, GF-1, GF-4 and Landsat-8 satellites to validate forest fires
that occurred in March 2020 in Liangshan Yi Autonomous Prefecture, Sichuan Province,
and the monitoring efficiency was significantly improved (Tian et al., 2022). In 2023, Yin et al. used GF-6
Wide Field of View (WFV) data and FY-3D Medium-Resolution Spectral Imager
(MERSI) data to effectively identify forest fires in Anning, Yunnan Province,
on 9 May 2020 (Yin et al.,
2023).


3. Forest Fire Monitoring Methods
with Satellite Remote Sensing


Nowadays, many countries have established satellite
remote sensing systems for forest fire monitoring (He et al., 2022), and scholars have developed and improved a variety
of forest fire monitoring algorithms for different remote sensing satellites.
Forest fire monitoring algorithms can be mainly classified into Brightness
Temperature detection-based forest fire monitoring methods and forest fire
smoke detection-based forest fire monitoring methods.


3.1.
Forest Fire Monitoring Methods Based on Brightness Temperature


The most common and basic method used in research on
forest fire monitoring with satellite remote sensing technology is Brightness
Temperature (BT) detection method. This method uses BT differences between
forest fires and other categories of land cover in the Middle Infrared (MIR)
and Thermal Infrared (TIR) channels of remote sensing imagery to construct
forest fire detection algorithms, and then combines the reflective properties
of the visible or Near-infrared (NIR) channels to exclude spurious detections
of forest fires.


3.1.1. Brightness Temperature
Detection Based on Bi-spectral Method


Remote sensing infrared is highly sensitive to thermal
radiation (Li & Jia, 2018). Forest fires occur at
high temperatures, therefore the use of remote sensing infrared to discriminate
the BT anomaly of land covers can be effective in detecting forest fires. 


In 1981, Dozier (1981)
proposed the bi-spectral detection method to calculate the temperature and area
of sub-pixel fire points using MIR and TIR data from AVHRR, paying the way for
forest fire monitoring using remote sensing infrared data. However, this method
is premised on the assumption that there are only two temperature fields, the
flame and the background, and both temperature fields have the same temperature
(Dozier, 1981). This assumption is usually
unrealistic and limits the applicability of the method. On this basis, scholars
have made further improvements to the bi-spectral detection method. In 1990,
Kaufman et al. (1990) improved the
bi-spectral method by using AVHRR data to deal with the problem of high
environmental impact during forest fire detection in the daytime. In 2006,
Zhukov et al. ( 2006) used Dozier’s
bi-spectral method to summarize and analyze the mission experience of the
bi-spectral infrared detection (BIRD) experimental small satellite and
confirmed that it is more reasonable to quantitatively evaluate forest fires in
terms of FRP than the effective fire temperature or the effective fire area. In
2008, Eckmann et al. (2008) proposed the multiple
endmember spectral mixture analysis (MESMA) based on the bi-spectral method to
address the uncertainties in the detection of fire size and temperature using
MODIS et al. They estimated the size and temperature of each fire sub-pixel by
pre-generating a library of fire end-members and background end-members at
different temperatures to decompose the fire pixels (Eckmann et al., 2008). In 2013, Peterson et al. (2013)
used MIR and TIR data from MODIS to develop a sub-pixel-based FRP algorithm,
which incorporated a radiative transfer model to eliminate solar effects and
was applied to monitoring large forest fires in California, bridging the gap of
earlier studies (Dozier, 1981) where the algorithm
effect could not be verified due to the lack of real data. Given the rapid
replacement of satellites and sensors, this algorithm was designed to be
suitable for other sensors with similar spectral properties (Peterson et al., 2013). In 2014, Giglio and Schroeder (2014) proposed a rejection test before using the
bi-spectral method. They filtered detection errors caused by background
interference on the basis of prior knowledge and performed a feasibility
assessment using MODIS data over 10 years (Giglio & Schroeder, 2014) to further improve the
application of the bi-spectral method in forest fire detection.


3.1.2. Brightness Temperature
Detection Based on Threshold Method


The threshold method is based on the analysis and
study of prior knowledge of an area or season to select the threshold for fire
point identification. When the BT of one or more spectral channels exceeds the
pre-selected threshold, it is considered to be the fire point pixel. The
threshold methods used for forest fire monitoring can be divided into
single-channel threshold (SCT) method and multi-channel threshold (MCT) method.


The SCT method relies only on the BT value  in the MIR channel. If
the BT value  of a pixel is
greater than the pre-selected threshold, this pixel is defined as having the
fire point. In 1991, Setzer and Pereira (1991)
carried out a study of forest fire detection in tropical forests, using a
digital non-supervised clustering algorithm to set pixels in Band 3 of AVHRR
with the radiometric temperature above 460°C
as fire points. As AVHRR lacks a dedicated channel designed for fire detection,
scholars attempted to migrate SCT to other sensors and demonstrated its
feasibility, for example, Arino and Rosaz (Arino et al., 1999)
applied SCT to ATSR for forest fire detection. SCT is better suited to areas
with low temperatures or low solar reflection (Hua & Shao, 2017). And it is more effective in detecting forest fires
at night, but during the day there are more detection errors due to the
influence of solar reflection caused by surface bright objects.


To solve the problems of SCT, MCT is pre-processed by
eliminating clouds, compensating for solar radiation generated by ground
reflections et al. to improve the effectiveness of MIR and then rules out
spurious forest fires by comparing the BT difference in channels between MIR
and TIR (Li et al., 2001). In 1990, Kaufman et
al. (1990) demonstrated that if in a pixel, the channel 3 (MIR)
temperature  and the
channel 4 (TIR) temperature  acquired
from AVHRR simultaneously satisfy the following criteria, fires are defined in
this pixel.



 
  	
  

  
  	
  (1)

  
 




In Equations (1), represents the MIR temperature
value,  represents the TIR temperature
value, and represents the unit of
temperature.


In 1994, Kennedy et al. (1994)
upgraded the forest fire monitoring system in West Africa, based on Kaufman’s
study (Kaufman et al., 1990), by optimizing the
threshold value for channels 3 and 4 and increasing the difference between  and  to further eliminate
spurious forest fires. In 2004, Pu et al. (2004) used a series of
threshold tests to eliminate spurious fire alarms caused by warm backgrounds
(e.g. bare ground), highly reflective clouds, and surface bright objects.


The threshold method is highly territorial and is only
applicable to local areas, which is difficult to cope with forest fire
monitoring in different geographical areas or different seasons. Therefore,
scholars need to select appropriate thresholds according to characteristics of
different areas. For example, in 2004, Li et al. (2000)
developed a forest fire monitoring threshold method for the unique environment
of northern Canada, which discriminated all potential forest fire pixels while
removing spurious forest fire pixels. This algorithm can detect most real
forest fires without thick cloud interference, laying the foundation for local
forest fire satellite monitoring systems. In response to the problem of poor
adaptability of fixed-threshold methods, scholars have investigated forest fire
monitoring algorithms with adaptive thresholds (He & Liu, 2008; Liu et al.,
2020).
However, the missed detection rate of forest fires was high.


3.1.3. Brightness Temperature
Detection Based on Contextual Method


The threshold method uses multi-spectral information
to detect forest fires step by step for individual pixels without taking into
account the effect of surrounding pixels, i.e. the environmental background
changes, on forest fire detection.


To solve this problem, in 1990, Lee and Tag (1990) proposed a contextual method, based on MCT,
extending to spatial information. They set up a 3x3 pixel matrix centered on
the target pixel, calculated the background temperature according to
surrounding pixels, and compare it with the mean BT value within the matrix to
discriminate the presence of fires in the target pixel (Lee & Tag, 1990). This method can be flexibly and
effectively applied to scenes where the surface temperature varies
considerably. In 1996, Flasse and Ceccato (1996) proposed a fire
detection contextual algorithm. They used the threshold method to detect
potential fires using AVHRR data, analyzed the neighboring pixel background,
and then compared the potential fires and their backgrounds by the BT
properties of background pixels to confirm the real fires (Flasse & Ceccato, 1996). This method was tested
in tropical rainforests and proved to be suitable for detecting forest fires in
different areas at different times. However, a limitation revealed by this
study is that in 1999, Nakayama et al. (1999)
found that when this method was applied to large burning areas of fire, the
central point was wrongly detected as a non-fire point. In 2007, Li et al. (2007) proposed an enhanced contextual algorithm for
detection of forest fire (ECFDA), which improved the neighboring pixels
confirmation algorithm of potential fires by optimizing the size of the
background matrix, and improved the criteria selection algorithm for real fires
by introducing the concept of BT gradient. The ECFDA is sensitive to the
detection of small-scale fires, but cannot be applied to large-scale forest
fires.


MODIS has dedicated fire detection channels and is
used more often in forest fire monitoring studies. In 2003, Giglio et al. (2003) proposed an improved contextual fire detection
algorithm for MODIS, known as version 4, which provides considerable
improvement over previous versions. The version 4, improving the detecting
sensitivity to small fires and cold fires, classified pixels examined by MODIS
as one of the following classes: missing data, cloud, water, non-fire, fire, or
unknown (Giglio et al., 2003). In 2008, Schroeder et
al. (2008) tested the performance
of the MODIS fire product using ASTER and ETM+ images in Brazilian Amazonia by
quantifying commission and omission error and improved contextual detection
algorithms using BT profiles to reduce the commission error rate in tropical
forests. To exclude the detection errors caused by small forest bare areas,
smoke obscuration, etc. and to reduce the commission error rate of fire
detection (Wang et al., 2009; Wang et al., 2007), in 2016, Giglio et al. (2016) improved the detecting algorithm using collection 6
MODIS data by introducing the forest clearing rejection test.


However, in 2006, Zhou and Wang (Zhou & Wang, 2006) demonstrated that the theoretical
algorithm for forest fire detection using MODIS data, when applied to Chinese
forests, misidentified non-forest fire areas with image noise interference as
forest fires. Therefore, they used the contextual method to analyze fire points
and their neighboring pixels of nine forest fire events in China, and improved
the noise point filtering criteria to effectively eliminate the noise
interference points (Zhou &
Wang, 2006).


As the performance of satellites and sensors continues
to improve, scholars have attempted to address problems of MODIS in forest fire
detection using newer satellites and sensors. In 2014, Schroeder et al. (2014) proposed an improved contextual method based on
VIIRS to eliminate spurious fire identification caused by daytime water bodies,
sun glints, bright objects, etc. In 2017, Lin et al. (2017)
proposed the use of infrared channel slope to analyze the difference between
TIR and MIR information collected from FY-3/VIRR and combined the contextual
fire detection method and dynamic threshold fire detection method for selecting
fire pixels. This method could better suit the global environment for fire
detection. In 2020, Yin et al. (2020), based on the
FY-3/MERSI data, improved the dynamic threshold method and the contextual
method for forest fire detection, by setting the threshold criteria for the BT
value in the MIR, which achieved the fast and effective detection of both large
and small-scale fires. The contextual method detects forest fires based on the
difference between the target and the background within the adaptive window. It
expands the application range of algorithms and improves the accuracy of forest
fire detection, but the application flexibility is limited by regional
differences in monitoring.


3.1.4. Brightness Temperature
Detection Based on Deep Learning Method


In recent years, scholars have paid increasing
attention to the application of Deep Learning methods in various fields,
including the field of forest fire monitoring, and have made great progress.
The more commonly employed methods include Neural Networks (NN), Decision Tree
and its ensemble learning algorithms, and Support Vector Machine (SVM), etc. In
2000, Arrue et al. (2000) constructed the “False
Alarm Reduction System” for forest fire monitoring using Back Propagation (BP)
NN, Radial Basis Function Network, and Dynamic Learning Vector Quantizer to
calculate the probability values of forest fires using satellite infrared images.
In 2009, Maeda et al. (2009) used the BP algorithm
to train artificial neural networks (ANN) of different structures to detect
forest fires in high-danger areas of the Brazilian Amazon using MODIS imagery,
achieving 90% accuracy. This algorithm allowed for fast training of samples
while maintaining detection accuracy for forest fires (Abid, 2021).


The BT detection method for forest fires is mainly
implemented by satellites and sensors with TIR channels, such as MODIS, AVHRR,
FY series, etc., but it is not suitable for satellites and sensors with only a
single MIR channel for forest fire detection.


3.2.
Forest Fire Monitoring Methods Based on Forest Smoke Detection


In the early stage of forest fires, the low
temperatures from combustion make it difficult for satellites to receive
sufficient infrared radiation for imaging. However, insufficient burning of
combustible materials produces large amounts of smoke, and detection of forest
fire smoke by satellite can lead to earlier detection of forest fires.
Currently, there are fewer domestic and international studies on smoke
detection using satellites to detect forest fires.


3.2.1. Forest Smoke Detection Based
on Visual Identification Method


The visual identification method is the early forest
fire smoke detection method. It uses computers to generate true-color or
false-color images of forest fire smoke to visualize the shape and scale of
forest fire smoke (Chung &
Le, 1984;
Ferrare et al., 1990), and then manually interprets the
area and diffusion direction of the forest fire smoke. The visual
identification method is intuitive and convenient, but it relies on artificial
operation, which is not conducive to the automatic processing of forest fire
smoke information, and the accuracy of smoke identification is low. To improve
the accuracy of smoke detection and reduce the subjective dependence of the
visual identification method, scholars have used infrared information in
combination with the threshold method for forest fire smoke detection.


3.2.2. Forest Smoke Detection Based
on MCT Method


MCT detects smoke pixels by utilizing the rich land
cover information in remote sensing images, setting criteria based on
characteristics of land covers such as clouds, water bodies, vegetation, etc.,
combining the spectral features of multiple infrared channels (Xie et al., 2007), and excluding non-smoke pixels
by different thresholds.


In 2007, Chrysoulakis et al. (2007) identified the center of forest fire smoke, based on
multi-temporal and multi-spectral features of remote sensing imagery, by
comparing the anomalous pixels in the NIR channel and combining them with the
Normalized Difference Vegetation Index (NDVI) index, and then used spectral and
spatial filters to spatially extend the center to the entire area covered by
the forest fire smoke plume. The proposed algorithm provided accurate estimates
of the spatial characteristics of the forest fire smoke plume (Chrysoulakis et al., 2007). To improve the
sensitivity of detecting small fires and low-temperature fires, in 2007, Wang
et al. (2007) identified smoke
pixels using the smoke mask technique based on information from the TIR channel
and solar reflectance channel, and used the contextual method to detect missed
forest fire events accompanied by significant smoke plumes. In addition, in 2008,
Peng et al. (2008) set a forest fire smoke
discrimination threshold based on the characteristics of tropical rainforests,
and improved forest fire monitoring algorithm based on version 4 MODIS data by
using the adaptive window adjustment technique of the smoke plume mask. This
algorithm improved sensitivity to detection of small forest fires at
low-temperature forest fires, especially fires with large scan angles (Peng et al., 2008).


However, smoke has no fixed spectral characteristics
and shows similar features to clouds, dust and haze on the satellite spectral
bands, thus making it difficult to distinguish them, resulting in the MCT
method not being able to effectively employ smoke detection for early warning
of forest fires.


3.2.3. Forest Smoke Detection Based on
Deep Learning 


With the continuous launch of satellites, real-time
access to remote sensing data has become a reality, and there is an urgent need
to develop more effective and intelligent algorithms for the automated
detection of forest fire smoke based on massive remote sensing data. In 2014,
Li et al. (2014) separated smoke from
other land cover types in satellite imagery and developed a smoke
identification algorithm combining Fisher linear Discrimination and K-means
clustering, which was validated using forest fire events in Greater Khingan
Mountains (China), Amur Region (Russia), Australia and Canada, confirming that
the algorithm could capture both heavy and dispersed forest fire smoke. In
2015, Li et al. (2015) trained and debugged
the BPNN with samples acquired from MODIS data of three forest fire events
occurring in China, Northeast Asia, and Russia, and verified that the algorithm
was effective in capturing thick and thin smoke over land. In 2020, Qin et al.
(2020) constructed a Decision Tree Identification model for
forest fire smoke based on the reflectance of forest fire smoke in the visible
and NIR channels of GF-1 and GF-2 satellite imagery. In 2023, Li et al. (2023) improved the subpixel mapping method based on the
Random Forest model for identifying and locating forest fire smoke.


Scholars have further improved deep learning
algorithms to address problems that have arisen in forest fire smoke detection
research. The uneven spatial distribution of smoke and the complexity of its
background result in smoke being difficult to detect due to its inconspicuous
features in satellite imagery. To distinguish forest fire smoke from the
background scene, in 2019, Ba et al. (2019) optimized the CNN,
which improved the recognition accuracy of CNN for forest fire smoke based on
remote sensing imagery, by introducing spatial and channel-wise attention
mechanisms, and sorting out the spatial characteristic information of remote
sensing images collected from medium- and high-resolution satellites. The
acquisition of remote sensing image data containing forest fire smoke is
limited by the constraints of satellite lifetime in orbit, geographical
coverage, etc., which makes it difficult to collect a sufficiently large-scale
dataset of forest fire smoke (Zheng et al.,
2023).
In 2018, ZHANG et al. (2018) performed forest fire
smoke detection experiments based on the Faster R-CNN model, inserting real and
simulated smoke into forest images to generate synthetic forest fire smoke
samples. The results demonstrated that the method solves the problem of insufficient
data while eliminating the need for sample labeling. In 2023, Sathishkumar et
al. (2023) selected the Xception
model as the optimal model, and fine-tuned it using the Learning Without
Forgetting (LwF) algorithm to suit the new task. As a result, they investigated
Transfer Learning of pre-trained models for forest fire smoke monitoring, which
increased the data amount and decreased the long training time (Sathishkumar et al., 2023). In 2023, Zheng et al.
(2023) used Himawari-8 satellite remote sensing images to
construct a small-scale dataset and proposed a forest fire smoke detection
model (SR-Net) combining CNN and Lightweight Vision Transformer (Lightweight
ViT). The model employed CNN for inductive bias and the Global Attention
Mechanism of Lightweight ViT to generate a lightweight forest fire smoke
detection model with higher accuracy while consuming fewer training resources (Zheng et al., 2023).


4. Discussion and Conclusion


This study statistics and analyses research on
satellite remote sensing for forest fire monitoring in recent decades based on
bibliometric analysis, using the co-occurrence frequency of textual data
located in titles, abstracts and keywords. We extracted data from the Web of
Science search tool which contains a full range of papers. The input qualifiers
were “remote sensing” and “forest fire monitoring”, and a total of 999 papers
were retrieved (the data obtained up to 20 July 2023). We then used VOSviewer software
to visually represent extracted data from 999 papers (Figure 1).





Figure 1. Data visualization based
on keywords collected from Web of Science.


The results of the data network visualization show
that satellites used more in forest fire satellite monitoring studies are
Landsat, MODIS, Sentinel, etc., which all have obvious advantages and
limitations in forest fire detection. Landsat provides detailed information on
the spatial distribution of fires, but has a long revisit period (every 16
days) and a small geographical coverage area. MODIS has channels and products
specifically designed for fires, with a resolution of the highest 250m and high
detection accuracy, but the temporal resolution is not high enough to detect
fires in time and then alarm it. Moreover, the methodology for satellite
monitoring of forest fires shown in Figure 2
involves more terms such as “machine learning”, “time series” and “spectral
indices”. It indicates that the research hotspots in forest fire monitoring
focus on the introduction and development of Deep Learning in forest fire
monitoring (machine learning), the improvement of the temporal efficiency of
medium- and high-spatial-resolution satellites and sensors (time series), the
improvement of monitoring algorithms for forest fires using the information of
infrared channels (spectral indexes), and so on.





Figure 2. Publication numbers of
research on satellite monitoring for forest fires in the Web of Science Core
Collection database from 2009 to 2023. (The data obtained up to 20 July 2023.)


As the systems of satellites, sensors and forest fire
monitoring technology, such as time series techniques to process data, deep
learning methods, etc. (Santos et al.,
2021),
advance by leaps and bounds, and the free remote sensing imagery springing up,
the attention to satellite remote sensing monitoring of forest fires has gained
a strong momentum. From the data provided by Web of Science, it can be seen
that 2018 to 2023 (the data obtained up to 20 July 2023) are the most
representative five years for domestic and international research on forest
fire satellite remote sensing monitoring. Over these five years, satellite
remote sensing monitoring algorithms for forest fires have become increasingly
mature, but the current algorithms still have their own advantages and
disadvantages, as shown in Table 2.


Table 2. Advantages and
disadvantages of satellite remote sensing monitoring algorithms for forest
fires.



 
  	
  Algorithms

  
  	
  Advantages

  
  	
  Disadvantages

  
 

 
  	
  Bi-spectral Method

  
  	
  Laying the theoretical
  foundations.

  
  	
  Based on unrealistic assumptions
  and lack of validation by actual data.

  
 

 
  	
  SCT Method

  
  	
  Simple technology.

  
  	
  Large daytime error.

  
 

 
  	
  MCT Method

  
  	
  High stability.

  
  	
  Not adapted to diverse
  environmental backgrounds.

  
 

 
  	
  Contextual Method

  
  	
  Highly adaptable to the
  environment.

  
  	
  High rate of missed and wrong judgements
  for small fires and low-temperature fires.

  
 

 
  	
  Deep Learning Method

  
  	
  Highly automated.

  
  	
  Relatively complex methods and
  techniques.

  
 




The review of literature revealed the following
characteristics of satellite remote sensing monitoring of forest fires:


(1) Satellite remote sensing monitoring of forest
fires is strongly influenced by the temporal and spatial resolution of
satellites and sensors. It is difficult for current satellites and sensors to
simultaneously fulfill the requirements of high temporal resolution and high
spatial resolution for forest fire monitoring. Geostationary Meteorological
Satellites have high temporal resolution but low spatial resolution, while
Polar Orbit Meteorological Satellites have low temporal resolution but higher
spatial resolution. Therefore, scholars at home and abroad have improved
various algorithms for satellite remote sensing monitoring for forest fires,
and are dedicated to making up for shortcomings of forest fire monitoring in
time and space. For example, Himawari-8 can acquire surface information every
10 minutes, which is suitable for real-time monitoring of forest fires (Zhang et al., 2023), but suffers from the problem of
low spatial resolution of pixels and large differences in the information
contained in pixels. Therefore, Himawari-8 is more suitable to use deep
learning algorithms for forest fire monitoring (Kang et al., 2022). On the contrary, MODIS has low temporal resolution
and cannot rapidly detect forest fires, but it has high spatial resolution and
can more accurately detect forest fires (Feng &
Zhou, 2023).


Cloud masking impacts the effectiveness of forest fire
monitoring. Current cloud identification algorithms have evolved to
automatically and intelligently identify clouds using machine learning
algorithms (Bing et al., 2023), but there are fewer
studies applying them to data preprocessing for forest fire monitoring. Cloud
masking can increase the satellite’s reflectance in the visible band and
decrease the BT value in the infrared band (Xie et al., 2018). Current cloud identification algorithms in forest
fire monitoring mainly use the threshold method (Xu & Zhong, 2017), but the method is greatly affected by different
time points and environments. Cloud identification using machine learning
algorithms is more flexible than the threshold method, which has a simpler
structure and higher accuracy, however, it requires manual extraction of
training samples from different scenes (Tsagkatakis et al., 2019), and it is difficult
for a single satellite or sensor to meet the number requirement of training
samples.


Satellite monitoring algorithms for forest fire work
to improve the sensitivity of monitoring small fires and fires with low bright
temperatures. Due to the small burning area, insufficient combustion, low flame
temperature and other features at the early stage of forest fires, and canopy
shading, it leads to missed judgment and false judgment when using satellites
and sensors to detect small fires or low-temperature fires.


Given the above characteristics, the future
development trends of satellite remote sensing monitoring for forest fires are
as follows:


(1) Using multi-source satellites and sensors to
improve the spatial and temporal efficiency of forest fire monitoring. For
instance, the combination of GF-6 WFV and FY-3 MERSI enables multi-aspect
capture of forest fire information (Yin et al.,
2023).
The spatial resolution of GF-6 WFV data is 16m, the radiometric resolution is
12bit, its coverage is wide, and its imaging quality is high. FY-3 MERSI’s
monitoring scope is broad, observation frequency is dense, and it is sensitive
to high-temperature heat reservoirs on the ground (Zheng et al., 2013). In addition, recent years have witnessed a spurt of
progress in satellites and sensors. Research could incorporate an increasing
number of advanced satellites for forest fire monitoring, such as China’s HJ-1A
and 1B satellites which can provide data up to 30m resolution (Sun et al., 2010), and South Korea’s GK2A satellite
carrying an AMI sensor, which can provide a spatial resolution of up to 500m in
the visible band, has a comparatively higher radiometric and spectral
resolution, and has improved imaging time up to 10 minutes (Chen et al., 2022).


(2) Migrating and improving deep learning-based cloud
detection algorithms to make them suitable for data preprocessing of forest
fire monitoring. Deep learning captures more comprehensive and deeper features
of cloud on remote sensing imagery, which can also be improved to be trained
with small sample datasets (Zheng et al.,
2023).
Among the deep learning algorithms, CNN can classify and detect clouds with
high accuracy (Segal-Rozenhaimer
et al., 2020;
Yu et al., 2020). U-Net can identify thin clouds,
broken pieces of clouds (Segal-Rozenhaimer
et al., 2020;
Yu et al., 2020) and clouds in snow and ice
regions (Jeppesen et al., 2019), distinguish between
clouds and their shadows, and capture cloud boundaries (Bing et al., 2023). And BP NN are suitable for
remote sensing imagery data containing complex underlying surfaces (Gao et al., 2018). However, the training time for
cloud recognition using deep learning models is long and the model structure is
complex, so they need to be migrated and improved to increase the computational
efficiency when they are applied to forest fire monitoring.


(3) Increasing the accuracy of spatial positioning for
satellite remote sensing monitoring of forest fires. Remote sensing imagery
contains abundant feature types, but the spatial resolution of the highly
temporal satellite data used in forest fire monitoring is low. The use of
hybrid pixel decomposition combined with sub-pixel localization methods can
effectively improve the spatial positioning accuracy during forest fire
monitoring (Xu et al., 2022). There have been
studies applying sub-pixel localization methods to other areas (Ling et al., 2010), but fewer use it in satellite
remote sensing monitoring of forest fires.
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