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Abstract: Forest biomass is the energy base and material source of forest ecosystem cycle, which is expressed 
by the dry matter weight or energy accumulated per unit area and time. It is also an important index to study 
the structure and function of forest ecosystem, and is the premise and basis of scientific management of forest 
ecosystem. In this paper, the concept, development history, and research status of forest biomass were re-
viewed. The sampling methods, model construction methods of forest biomass survey were analyzed. Finally, 
the research prospects and summaries of key technologies of forest biomass inventory and monitoring were 
put forward. 
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1. History and Methodologies

1.1. History 
According to the time line clustering view of forest biomass studies, the first biomass studies 

were conducted by Ebermayer (1876) in Germany to measure the amount of branches and leaves 
and the weight of wood in several forests, and the results have been cited by geochemists in calcu-
lating the chemical elements in the biosphere for more than 50 years. Before the 1950s, the study 
of forest biomass received little attention (Boysen, 1910; Kitterge, 1944). It was not until the 1950s 
that researchers from various countries around the world began to pay attention to the study of 
forest biomass. Researchers in Japan and the United States successively carried out the study of 
forest productivity, and began to conduct actual investigation and data collection on the biomass 
and productivity of major forest ecosystems. In the early 1970s, with the implementation of the 
International Geosphere and Biosphere Program (IGBP), the study of vegetation biomass and 
productivity introduced the perspective of ecosystem, grasped the process of ecosystem material 
production from an overall level and combined with environmental factors, and greatly developed 
the study of forest biomass and productivity.  

After the 1980s, some scholars established regression equations of biomass using easy meas-
urement factors of stand to study the biomass in different areas (Brandeis et al., 2006; Montes et 
al., 2000; Nascimento & Laurance, 2002). Others have studied the distribution patterns of forest 
structure and biomass in Northern Europe and America, and the dynamics of forest biomass 
changes after disturbance (de Wit et al., 2006; Giese et al., 2003; Kauffman et al., 2003; Lehtonen 
et al., 2004). With the mature application of satellite remote sensing technology in geography, some 
scholars have used the TM, ETM+ remote sensing data (Dong et al., 2003; Labrecque et al., 2006; 
Suganuma et al., 2006) and satellite Radar data (Austin et al., 2003; Hyde et al., 2007; Lucas et al., 
2006) for studying forest biomass in a different area. With the accumulation of time, the remote 
sensing data volume is increasing, which brings new opportunities and challenges to the study of 
biomass estimation by remote sensing. the initial research on forest biomass started from the forest 
ecosystem and forest succession, and a large number of studies on forest biomass and carbon den-
sity were carried out from the 1990s to 2000. In the first decade of the new century, a large number 
of scholars carried out research on remote sensing and carbon sequestration, which are closely 
related to continuous inventory and management of forest resources, as shown in Figure 1. 
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Figure 1. Time line clustering view of forest biomass studies. 

1.2. Methodologies 
The traditional methods of biomass inventory and estimation are still dominant. These tradi-

tional methods could be divided into carbon dioxide balance method, micrometeorological field 
method, direct harvest method and expansion factor method (Wu et al., 2023). The direct harvest 
method is the most accurate survey method and the most practical method for terrestrial forests. 
Direct harvest method can be divided into average wood method, clear cutting method, and relative 
growth method. The traditional methods of biomass investigation and estimation are heavy in work-
load, complicated in process, poor in representativeness, and have not formed a system of meas-
urement techniques. Therefore, the traditional methods cannot timely reflect the quick changes of 
macroscopical ecosystems and ecological environment conditions, which could not meet the prac-
tical requirements. With the development of “3S” (GIS, RS, and GPS) technology, studies on veg-
etation productivity and biomass based on remote sensing technology have developed from the 
traditional ground measurement on a small scale and two-dimensional scale to the estimation of a 
large scale and multidimensional space-time, so that forest biomass at different spatial scales from 
stand to region can be estimated quickly (Hill et al., 2018), accurately. 

2. Sampling Techniques 
Sampling is a method based on probability theory. The random selection of samples can en-

sure the representativeness of samples, avoid human interference and deviation, and estimate the 
sampling error (Wu et al., 2023). Different sampling methods should be used for different purposes 
(Hou et al., 2021). In practical problems, a specific sampling scheme is mostly composed of a 
variety of basic sampling methods (Bagaram & Tóth, 2020). The methods of systematic sampling, 
stratified sampling and random sampling are used in biomass inventory at various levels. As a 
classical sampling method, equal probability sampling has been widely used (Hawbaker et al., 
2009), and methods such as unequal probability sampling, remote sensing based sampling and 
sparse population distribution sampling (Lei & Tang, 2007; Sterba, 2009) are more targeted in 
biomass inventory. The study of forest biomass sampling mainly focuses on two keywords, meas-
urement and estimation (Perez-Cruzado et al., 2021), which are closely related to forest carbon 
storage. The study of forest biomass sampling is gradually extended to survey design and estimation 
model, as shown in Figure 2. 
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Figure 2. Cluster view of forest biomass sampling studies. 

2.1. Equal Probability Sampling 
2.1.1. Random Sampling 

The sample units obtained by random sampling are scattered, which is not conducive to the 
development of actual forest resources investigation (Yu, 1974), and the accuracy depends on the 
number of sample units (Jin & Zhao, 2001; Meng et al., 1995). When the standard deviation of 
biomass between the sample units of systematic sampling is large, even if the samples are organized 
according to the method of systematic sampling, the estimated result is closer to the random sam-
pling. To ensure the accuracy of sampling inventory results, it is necessary to increase the sample 
units. At present, the most common approach to estimating provincial forest biomass is by using 
data from continuous forest resource inventory plots data (Qin et al., 2017). However, the biomass 
estimation of this method is summarized from the level of individual trees to the level of plot, and 
then estimated the total biomass of the region. In the process, there are a large number of errors 
from different sources (McRoberts et al., 2013) and uncertainties, such as measurement errors, 
model uncertainties, and young trees that do not measure, which could lead to underestimation of 
forest biomass data (Poudel et al., 2015). The error sources of forest biomass estimation are diverse, 
and there are interaction and error conduction effects among them, so scientific sampling design is 
particularly important (Montesano et al., 2015). 
2.1.2. Stratified Sampling 

Compared with random sampling, stratified sampling often has significant efficiency for es-
timation. The effect of stratified sampling depends on the accuracy of prior information. The key 
point is that according to the classification of attribute characteristics, the variance between sample 
units in the same layer should be as small as possible, while the variance between sample units in 
different layers should be as large as possible. When the standard deviation of total biomass is large 
and the standard deviation between subpopulations is small, the estimation accuracy of using strat-
ified sampling is greater than that of the random sampling (Zeng et al., 1995). Stratified sampling 
is often used to investigate forest volume in forest resource planning and design investigation (Yang, 
1993). Cluster sampling divides the survey population into disjoint groups and then surveys the 
whole. By increasing the number of investigation units of adjacent samples to improve the accuracy 



A&R 2023, Vol. 1, No. 1, 0002 4 of 11 
 

and sampling efficiency and has been widely used in some forest resource surveys distributed in 
clusters (Li et al., 2019; Shi, 2012). 
2.1.3. Cluster Sampling 

Since adaptive sampling design was proposed in the 1990s (Thompson, 1991), sample or-
ganization method, estimation method and practical application have all been improved and per-
fected. Since traditional sampling methods do not consider the inconsistent contributions of differ-
ent clusters, traditional methods such as systematic sampling may lead to the reduction of sampling 
efficiency and estimation accuracy (Gao & Gao, 2018; Hua et al., 2014; Huang, 2018; Zeng et al., 
2018). Adaptive sampling design for sparse distribution population relying on the correlation be-
tween sample units can effectively reduce the number of sampling units (Hero et al., 2013; Lin et 
al., 2009); Traditional cluster sampling for aggregate distribution may lead to estimation bias (Xiao, 
2004). The combination method of applying the results of biomass spatial distribution pattern anal-
ysis to adaptive sampling is unequal probability sampling (Holmberg & Lundevaller, 2015). Dif-
ferent distribution patterns should have different sampling probabilities. Adaptive sampling com-
bined with unequal probability sampling can fully consider the spatial distribution difference of 
biomass, the status difference of different clusters, to carry out adaptive unequal probability sam-
pling. 

2.2. Unequal Probability Sampling 
The advantage of unequal probability sampling is to improve the estimation accuracy and 

reduce the sampling error. The process of preparing the sampling frame is more complicated. PPES 
(sampling with probability proportional to an estimate of size) and PPP (probability proportional 
prediction) in forest resource inventory is the practical application of unequal probability sampling 
theory. In the 1970s, the forestry inventory began to use an unequal probability sampling design 
(Shi et al., 2009). Angular gauge for tree measurement is a typical application of unequal probabil-
ity sampling in forest resource investigation. Different sample organization forms and unequal 
probability sampling combine to form different sampling design schemes (Good et al., 2001; Zhou 
& Sun, 2004). The sample sizes in cluster sampling are often different, the sampling probabilities 
of groups of different sizes are specified, and sampling with unequal probabilities can ensure the 
accuracy of sampling estimation under the requirement of fewer sampling units (Peng, 1998). Un-
equal probability sampling is more complicated than equal probability sampling in sampling frame 
design and sampling probability determination, but it can effectively improve the sampling effi-
ciency (Li, 2000).  

2.3. Other Sampling Methods 
Unequal probability sampling is applicable to situations where the status of sampling units in 

the population is inconsistent or the units surveyed are inconsistent with those of the sampled pop-
ulation. The prerequisite of unequal probability sampling is that the sampling probability of sample 
units can be determined by the auxiliary information of each unit. Based on the prior information 
of the distribution pattern of forest biomass, the original sampling proportion was set, and the sam-
pling adaptation was conducted according to the sampling probability of neighborhood sample 
units, so as to improve sampling efficiency. The Ripley’s K(d) analysis, aggregation index analysis, 
nearest neighbor analysis and spatial autocorrelation analysis are the main spatial pattern analysis 
methods (Jiang et al., 2009). The nearest neighbor analysis selects and measures the distance be-
tween each base unit and its nearest base unit in turn, then calculates the mean value of the nearest 
neighbor distance of all base units in the region, and compares it with the expected mean value of 
random distribution. Aggregation index is used to calculate and analyze the distance between ad-
jacent sample units to describe the spatial distribution and aggregation state of biomass. The spatial 
autocorrelation analysis among sample units can effectively reduce sample redundancy and reduce 
investigation cost (Zhao et al., 2022). 

3. Modeling Techniques 
Stand growth model refers to a mathematical function or a group of mathematical functions 

describing the relationship between stand growth and site conditions, which is used to estimate the 
development process of a stand under certain conditions (Gao et al., 2017). The main uses of model 
include updating forest biomass data, evaluating the benefits of different forest management 
measures, evaluating the impact of disturbance activities on forest ecosystem, predicting the yield 
of forest sustainable management. Models can be classified into various types according to their 
purpose of use, model structure, and object of reflection. The correlation between forest carbon 
storage and aboveground biomass is still the main research of forest biomass model. Random forest 
and support vector machines are widely used in forest biomass model research, and forest meas-
urement is combined, as shown in Figure 3. 
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Figure 3. Cluster view of forest biomass modeling studies. 

3.1. Empirical Model 
3.1.1. Tree Level 

The biomass model of individual trees is a kind of model based on simulating the dry matter 
weight of each component (trunk, branch, leaf, bark, root, etc.) of each tree in the stand. More than 
3000 biomass models have been established globally, involving more than 100 tree species (Basuki 
et al., 2009; Case & Hall, 2008; Chojnacky, 2002; Jenkins et al., 2003; Muukkonen, 2006). In the 
modeling process, it is necessary to measure the biomass of a certain number of sample trees as the 
basic data. Once the model is established, the continuous forest inventory data can be used to esti-
mate the biomass of the whole stand in the same kind of stands with a precision. Therefore, the 
research of biomass model of individual trees has always been a hot spot (Kleinn et al., 2020). 

According to the number of independent variables, tree level biomass models can be divided 
into unitary, binary and multivariate biomass models (Zeng & Tang, 2010). Models can be divided 
into linear, nonlinear and polynomial models, according to the form of tree level biomass models. 
Parameter estimation methods for biomass model construction of tree level biomass model mainly 
include traditional regression method (Basuki et al., 2009; Vallet et al., 2006), nonlinear likelihood 
uncorrelated regression method (Bi et al., 2004), linear or nonlinear joint estimation method (Tang 
et al., 2000), dummy variable method (Fu et al., 2012), mixed effects model method (Fehrmann et 
al., 2008), measurement error model method (Zeng & Tang, 2012), spatial regression method (Ou 
et al., 2014), and so forth. 

In the research and application of biomass models, the component model is incompatible with 
the aggregate model (Parresol, 1999; Xu & Zhang, 2002). Tang et al. (2000) proposed a compatible 
tree level biomass model and estimation method combined with the current forest volume resources 
inventory method, namely the nonlinear joint estimation method. Compatible biomass models 
mainly include two types, namely the biomass model compatible with volume, and the biomass 
model compatible with total and component. 
3.1.2. Stand Level 

With the proposal of the IGBP, the results of previous ecological research systems and bio-
mass data at stand level have been extended to landscape, regional and even global scales in the 
study of global climate change (Xu & Zhang, 2002). According to the independent variables, stand 
level biomass model can be divided into the model based on stand factor and the model based on 
volume. The biomass model based on volume can be subdivided into biomass expansion factor 
(BEF) and continuous biomass conversion functions (CBCF). 

The dependent variable of the stand biomass model is usually the biomass per unit area of 
each organ of the stand, while the independent variable is the total basal area, dominant height, and 
average height of the stand to construct the stand biomass model of each dimension (Luo et al., 
2009). Because the measurement of biomass at stand level rarely uses clear-cutting to obtain meas-
ured data, mostly obtains the biomass data based on the calculation of biomass model of individual 
trees or the measurement of standard trees (Dong & Li, 2016). Uncertainty analysis in the process 
of conversion from individual tree to stand level is also an important aspect of stand biomass re-
search (Qin et al., 2017). 

Scholars began to study to improve the accuracy of forest biomass estimation, and thus pro-
posed a series of research methods (Fang et al., 2001). Among them, BEF is a method to obtain the 



A&R 2023, Vol. 1, No. 1, 0002 6 of 11 
 

total biomass of stand by multiplying the average biomass of stand by the total volume of the forest 
types (Kauppi et al., 1992). The shortcomings of the BEF method are mainly reflected in the con-
version factors, such as wood density and conversion ratio of total biomass and aboveground bio-
mass, which are taken as constants. Fang et al. (1998) pointed out that stand biomass and volume 
were related to forest type, age, site conditions, stand density and other factors, and that the use of 
constant biomass conversion factor could not accurately estimate forest biomass. The continuous 
function method of conversion factors changes the constant average conversion factor into an age-
graded conversion factor to achieve a more accurate estimation of forest biomass at the national or 
regional scale (Edgar et al., 2019; Kauppi et al., 1992; Turner et al., 1995). The conversion model 
between biomass and volume is a hot topic in recent years, which needs to be further verified from 
the region and tree species, and the model relationship should be established comprehensively and 
systematically. 

3.2. Nonparametric Model 
Traditional statistical regression methods could not effectively describe the complex nonlinear 

relationship between forest biomass and measured data in certain situation, as well as practical 
problems such as high dimension, and the derived relationship is usually only applicable to this 
region. Although the accuracy can be improved by the learning method, the “black box” operation 
only shows their complex action process through the simulation of some training data sets, which 
is difficult to reflect the mechanism between biomass and remote sensing parameters. In order to 
improve the nonlinear prediction ability of biomass model, data mining and machine learning meth-
ods were applied to forest biomass estimation, including decision tree, K-NN method, support vec-
tor machine and artificial neural network. 
3.2.1. Artificial Neural Network 

Artificial neural network (ANN) is based on spectral information, vegetation index and tex-
ture characteristics as input variables of neural network, forest aboveground biomass of sample plot 
survey as output variables, select part of the sample data input neural network system for training 
to obtain a model algorithm, and then estimate the forest aboveground biomass according to the 
model algorithm (Foody et al., 2003; Xu et al., 2011). 
3.2.2. Decision Tree 

Decision tree (DT) is a method to approximate discrete value function, which can be regarded 
as a tree prediction model. The basic algorithms include random forest and gradient lifting decision 
tree. Decision tree integration methods can remove noise interference well, training complexity is 
low, prediction is accurate, and the model is easy to display, but there may be problems with over-
fitting of training data (Carreiras et al., 2012). 
3.2.3. K-NN Method 

K-nearest neighbor (K-NN) classification algorithm is also known as the reference plot 
method. The forest aboveground biomass value of a certain pixel of remote sensing image is ob-
tained by weighted value of K measured sample points closest to the pixel in feature space (Chirici 
et al., 2008; Tuominen, et al., 2010), and then monitored forest aboveground biomass according to 
the sample plot data. The K-NN method can estimate the forest biomass and maintain the hetero-
geneity and similarity characteristics of the spatial distribution of carbon density, but its estimation 
results are often higher than those estimated by using the sample plot data (Labrecque et al., 2006). 
3.2.4. Support Vector Machine 

The principle of support vector machine (SVM) can be summarized, the nonlinear transfor-
mation defined by the inner product function is used to transform the input space into a high-di-
mensional space, and then the optimal classification surface is obtained in this space. Each inter-
mediate node corresponds to a support vector, and the output is a combination of nodes (Zhang, 
2000). Support vector regression machine is a special form of SVM and a kernel theory of regres-
sion analysis and equation approximation (Englhart et al., 2011). It overcomes the defects of insuf-
ficient data and over-learning of traditional prediction methods and has unique advantages in solv-
ing small sample and high-dimensional problems. However, improper selection of kernel function 
would cause errors in estimation results. 

3.3. Remote Sensing Inversion Model 
3.3.1. Based on Tree Structure Parameters 

As for the structural parameters of trees, it is difficult to obtain the DBH by satellite remote 
sensing because the trunk is heavily shielded by the crown. As the vertical structure parameter of 
trees, height can be accurately measured by active lidar remote sensing. The height can be 
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calculated based on the time interval between the echo signal received by the lidar and the echo 
signal from the ground. Then, the biomasses were calculated by the tree height or stand average 
height. Many space-borne full-waveform tree height inversion models have been developed 
(Lefsky et al., 2005). 
3.3.2. Based on Vegetation Feature Index 

Spectral information analysis of optical remote sensing images of forests can reflect the bio-
physical characteristics of forests. A variety of vegetation indices can be applied for modeling based 
on forest optical remote sensing data. Commonly used vegetation index is usually a linear or non-
linear combination of spectral reflectance ratio of two or more bands (Zeng et al., 2022), which can 
compress multi-dimensional spectral information into one index channel. By statistical regression 
of various vegetation indices, structural parameters such as canopy density and leaf area index can 
be further estimated. Based on the statistical regression method, the relationship between the spec-
tral reflectance provided by optical remote sensing images and the vegetation biomass can be es-
tablished, and then the regional vegetation biomass can be estimated. 
3.3.3. Based on Physical Mechanism 

The mechanism model (or process model) is used to describe the vegetation growth process 
at different spatial-temporal scales, such as photosynthesis, respiration, decomposition and oxygen 
cycle, etc. It simulates the process of solar energy conversion into chemical energy, and the process 
of plant body and soil water loss accompanied by canopy evapotranspiration and photosynthesis 
according to the principles of plant physiology, to achieve the estimation of forest productivity. 
The mechanism model is incorporated into models of global change and nutrient cycling, with 
biomass being only one of the model’s output variables, taking CENTURY, CARAIB, TEM and 
so forth as Examples. The disadvantage of these models are often too complicated and need more 
input variables, the application of the model often depends on the quality of the data. The mecha-
nism model emphasizes more on the description of various action processes within the ecosystem, 
and the estimation results are generally more reliable (Xu & Cao, 2006). 

4. Research Prospects 
The biomass inventory sampling should make full use of the existing spatial data for distribu-

tion pattern analysis, and carry out sampling design based on the results of spatial distribution pat-
tern analysis (Wu & Xu, 2021). Spatial sampling technique can carry out with unequal probability 
sampling based on the spatial distribution pattern of forest biomass, which can effectively improve 
the investigation efficiency (Li et al., 2009; Wu et al., 2004). At the same time, in order to monitor 
large scale macroscopic changes and development trends of forest biomass, remote sensing data 
were used as sampling basic data and auxiliary survey data, and the method of aerial sampling was 
used to arrange sample plots on remote sensing maps to estimate forest biomass (Liu, 2001; Liu, 
2016) to meet the practical requirements of biomass estimation at different regional scales and 
spatial distribution characteristics (Hetzer et al., 2020; Zhu et al., 2020). 

In recent years, scholars have presented the biomass models of various tree species, and car-
ried out the study of forest biomass at multiple scales, such as individual, population, community, 
ecosystem, region and biosphere (McRoberts, 2001). It is necessary to study the biomass of indi-
vidual tree deeply, including different geographical provenances, different development stages, and 
different natural zones, so as to establish a weight index model of biomass to achieve a more accu-
rate estimation of biomass in different stand types. At present, there is still a lack of research on 
multi-level stand models. Only the biomass of standing trees with a certain diameter in forest was 
estimated, while the biomass of trees with a smaller diameter, understory shrubs and herbaceous 
plants was ignored. Therefore, the relationship between the total stand biomass and the biomass of 
living trees was clarified, and the biomass model of understory vegetation was established to solve 
the problem that the existing model neglected the biomass of smaller trees, understory shrubs, and 
herbs. In the future, model development, the effects of forest biological factors and non-biological 
factors on forest biomass should be considered comprehensively, especially the effects of stand 
volume, age, and climate factors on forest biomass estimation. 

Remote sensing has the characteristics of macroscopical, comprehensive, dynamic, rapid and 
repeatable, and its band information has a certain correlation with forest biomass, so it has become 
the main method for estimating regional forest biomass (Wirasatriya et al., 2022). Each remote 
sensing data has certain limitations in spatial, spectral and radiative resolution, which affects the 
ability of remote sensing technology to estimate forest biomass. These factors result in the instabil-
ity of the accuracy of estimating ground forest biomass with different remote sensing data (Yu et 
al., 2022). Combining ecological factors, topographic factors, environmental factors, and remote 
sensing data to build a forest biomass estimation model with multi-source data can inhibit the in-
fluence of these factors. When the optical remote sensing data are used to estimate the areas with 
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high forest biomass, the problem of remote sensing information saturation comes out. As a result, 
the changes of biomass cannot be accurately reflected, which becomes the bottleneck of forest bi-
omass estimation by remote sensing method. Steininger (2000) found that LandSatTM images had 
a saturation problem when estimating biomass. Its saturation threshold was 15kg/m2. Lu (2005) 
also found this problem when estimating the Amazon basin in Brazil. Similar problems exist in 
estimating forest biomass with radar data (Wang et al., 2006). Multi-sensor data integration and 
estimation methods can solve this problem to some extent. Multi-source remote sensing image by 
multi-sensor to estimate forest biomass has become a developing trend to address the saturation 
threshold issue (Zhu et al., 2020). Combining remote sensing data of different sensors, different 
time, different spatial resolution different spectral resolution, and selecting the optimal information 
to estimate forest biomass is a problem that needs to be studied in data assimilation, as well as a 
problem faced by contemporary remote sensing development (Zeng et al., 2022). There is a certain 
gap between field sampling data and remote sensing image data, which is also a problem faced by 
remote sensing data assimilation. 

5. Summary 
The change of ecological environment caused by climate warming is becoming more and 

more obvious. It is affecting the pattern of ecological system and the sustainable development of 
human society. It has become a global environmental problem recognized by the international com-
munity. Forest is one of the main terrestrial ecosystems, which has an important carbon sink func-
tion. Forest carbon reserves account for about 80% of the above-ground part of the land and 40% 
of the underground part of the land, and the annual carbon fixed amount accounts for more than 
2/3 of the whole terrestrial ecosystem. Forest in China will become a large carbon sink, which will 
play a positive role in mitigating the rise of global atmospheric carbon dioxide concentration. 

It is a research hotspot and technical difficulty in the field of natural resources investigation 
and monitoring that efficiently and accurately monitors the annual dynamic change of forest bio-
mass. National forest and grassland ecological comprehensive monitoring in 2021 and 2022 has 
optimized survey organization. The number of sample units to be investigated by equiprobability 
sampling is still quite large, under the specified accuracy and reliability. The estimation of forest 
biomass below the provincial level takes the regional total carbon storage as the control number 
and divides them into small populations according to the principle of hierarchical control to produce 
the biomass data. Due to the lack of precision and the inability to sensitively reflect the dynamic 
changes of forest biomass at different scales, the application of the monitoring results in forest 
carbon sink accounting and other work is limited. 

Based on the multi-stage sampling framework, researchers adopted the three-phase sampling 
method, combined with the characteristics of the regional distribution pattern of forest biomass, 
and carried out multi-scale unequal probability spatial stratified complex sampling design. The 
model sampling inference assisted by randomization inference was used to solve the problems of 
the limited sample size and small area estimation, data missing and measurement error under the 
specified precision, and the complicated sampling design uncertainty analysis and reliability eval-
uation were carried out. It is expected to form a set of complex sampling design and data inference 
technology for annual monitoring of forest biomass under hierarchical control, so as to meet the 
low-cost, rapid and accurate annual counting demand of forest biomass to be applied in practical 
work. 
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